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Abstract 

One of the most challenging tasks in potable water 

production is the cost-efficient and consistent operation of 

water treatment plants (WTPs) that treat raw water of 

variable quality and quantity. To increase process stability 

and optimize the usage of resources, two data-driven 

models simulated coagulation in two WTPs. The data-

driven models were successfully trained on monitoring 

data collected from the two WTPs (mean errors of effluent 

turbidity were below 0.5 NTU in both case studies) and 

were subsequently employed in the optimization of two 

historical periods of the WTPs. During this model-based 

backtesting of the WTPs, multiple operating scenarios 

were investigated on a daily time step in search of 

chemical doses that deliver a quality threshold for treated 

water at the minimum usage of chemicals. Results from 

the application of this model-based approach for WTP 

optimization indicated that a reduction of chemical costs 

equal to 6 % and 8 % would be probable for the two case 

studies respectively, without hampering the efficiency of 

raw water treatment. This work underscores that the large 

quantity of passive data that are amassed daily during the 

operation of WTPs can be turned into actionable 

intelligence that supports decision-making and enhances 

adaptive planning for water utility operators. 
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1. Introduction 

Optimization of coagulant doses is fundamental in water 

treatment plant (WTP) operation, as insufficient doses 

result in undesirable treated water quality, while high 

doses result in high treatment costs and potentially in 

water quality problems related to increased levels of 

residual aluminum. 

Typically, jar tests are employed in the optimization of 

coagulant doses. Nevertheless, jar testing is time-

consuming and, thereby, does not facilitate prompt 

responses to changes in raw water quality (Bertone et al., 

2015). Modeling overcomes this drawback of jar testing. 

In this work, data-driven algorithms were employed as 

inverse process models of the coagulation treatment 

process in order to specify the optimum coagulant dose. 

The inverse process model considered all available 

process inputs, the desired value of the process output 

(treated water turbidity) and searched for the optimal 

process control parameter, i.e. the coagulant dose, subject 

to operational constraints and standards of effluent water 

quality. 

An indispensable constituent of model-based optimization 

is a model of coagulation that reproduces the observed 

efficiency of turbidity removal under varying raw water 

characteristics, distinctive coagulant types and different 

coagulant doses. Two candidate data-driven algorithms 

were trained to capture the complex and nonlinear 

relationships between physical, chemical and operational 

parameters of coagulation: random forests (RFs) and 

Gaussian Process regression (GPR) models. The best-

performing algorithm was subsequently employed in a 

hindcasting rationale to pinpoint potential cost-saving 

treatment options in two WTPs located in Simbirizzi 

(Italy) and Aposelemis (Crete). 

2. Development of data-driven models of 

coagulation 

The development, training and validation of the data-

driven models of coagulation was realized in four steps: 

(1) data collection, (2) data manipulation, (3) training and 

cross-validation, and (4) model selection. 

Data collection (step 1) integrated available data into a 

single data set that were readily employed in model 

training. For the Simbirizzi WTP, daily measurements of 

flow rates, turbidity, pH and chemical dosing were 

available over a 24-month long period. For the 

Aposelemis WTP, flow rates, temperature, turbidity, pH, 

and chemical dosing were collected by a SCADA system 

in 5-minute intervals for a 14-month period. 

Data manipulation (step 2) consisted of (a) filling 

information gaps, and (b) “cleaning” noisy data. Piecewise 

cubic spline interpolations with a window of one time-step 

filled the missing information in the training data set. 

Hampel filters were applied for noise removal using a one 

time-step window and a threshold of three standard 

deviations. 

Model training and cross-validation (step 3) were jointly 

performed in a 10-fold cross-validation scheme. Two 

candidate models were trained and validated on the 

existing data, an RF and a GPR model. RFs produce non-

linear functions from the mean response of ensembles of 

weak decision trees that are trained on random sub-

samples of the training dataset (Kehoe et al., 2015). GPR 

models are nonparametric kernel-based probabilistic 

models that can be equivalent to any order of polynomials 

and, thus, they are appropriate for highly-nonlinear 
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functions with multiple extremes (Rasmussen, 2003). For 

both candidate models, a grid search method was used for 

their optimal formulation: (a) for RFs the size of the 

ensemble, the number of observations per leaf and the 

number of predictors at each node were investigated, (b) 

for GPR models we searched for the kernel function, the 

basis function, the noise variance and the hyperparameters 

that produce the best fit to the observed data. 

Ultimately, model selection (step 4) was based on two 

performance metrics, the coefficient of determination (R
2
) 

and the mean absolute errors (MAEs). The best-

performing model was employed as an inverse process 

model to search for the minimum coagulant doses that 

produce the target effluent turbidity, which was equal to 

the mean observed effluent turbidity of the two WTPs, i.e. 

3.0 NTU for Simbirizzi and 1.3 NTU for Aposelemis. 

3. Results and Discussion 

Model training and validation indicated that GPR models 

and RFs were equally competent in predicting effluent 

turbidity in the two WTPs, but GPR models were 

marginally better (data not shown). In addition, GPR 

models provide a robust assessment of prediction 

uncertainty. Thus, they were subsequently used in process 

optimization. For the Simbirizzi WTP, R
2
 for the RF 

model was 0.52, while the respective value for the GPR 

model was 0.54. The latter accomplished a MAE equal to 

0.45 NTU. For the Aposelemis WTP, 72% of the 

variability of the observed effluent turbidity was captured 

by the GPR model (R
2
 = 0.72); the RF model 

accomplished an R
2
 of 0.70. The MAEs were 0.23 NTU 

and 0.25 NTU, respectively. 

Inverse process modeling in the Simbirizzi WTP indicated 

that coagulant costs could have been 8% less for the 

historical 24-month period examined herein without a 

decline in coagulation performance (see Figure 1). In 

absolute terms, this reduction is equal to 57,300 kg poly-

aluminum chloride (PACl) and corresponds to 1,590 kg of 

CO2 emissions. Model application proposed coagulant 

doses like those used in the WTP for most of the 

hindcasting period. Yet, for 37 days a cost reduction 

higher or equal to 500 kg/d could have been achieved. 

Cost reduction was achieved in two ways. On one hand, 

model application detected coagulant doses that achieve 

better turbidity removal combined with reduced cost. On 

the other hand, model application suggested doses that 

offered an acceptable performance decline combined with 

an inversely proportional cost reduction. 

 

Figure 1. Observed versus simulated (a) coagulant dose 

and, (b) effluent turbidity for the coagulation stage of 

Simbirizzi WTP for a target effluent turbidity of 3.0 NTU. 

Simulated turbidities are depicted as intervals of 95 % 

confidence. 

In Aposelemis WTP, model application revealed that a 

chemical cost reduction of 6% could have been achieved 

for the 14-month period considered. Potential reduction of 

chemical dosing corresponds to nearly 300 kg of CO2 

emissions. The difference between model-based and 

observed doses is attributed to the potential reduction of 

alum doses (Figure 2c and 2d). Inverse process modeling 

proposed 16% lower alum doses, for the days that alum 

was supplied as a coagulant. The potential benefit 

achieved from alum optimization was mitigated when 

PACl was used as coagulant: modeling proposed nearly 

5% higher PACl dosing compared to the actually added 

doses (Figure 2a and 2b). Nonetheless, increased dosing 

offered higher turbidity removal. 

 

 
Figure 2. Observed versus simulated coagulant doses (a, 

c) and effluent turbidity (b, d) for the coagulation stage of 

Aposelemis WTP for a target effluent turbidity of 1.3 

NTU. Simulated turbidities are depicted as an interval of 

90 % confidence. 

4. Conclusions 

Data-driven models, i.e. GPR models and RFs, predicted 

satisfactorily effluent turbidity following coagulation 

under diverse coagulant doses, types and raw water 

characteristics in two WTPs. Mean turbidity errors were 

lower than 0.5 NTU, constituting, thus, model-based 

predictions adequate. 

The GPR-based models of coagulation were employed in 

an inverse mode for the optimization of the respective 

process of Simbirizzi and Aposelemis WTPs. Model-

based optimization revealed that chemical usage can be 

reduced without hampering the efficiency of turbidity 

removal by the coagulation process, even in WTPs that 

already function in an optimization rationale. 

This work underscored that the large quantity of passive 

data that are amassed daily during the operation of WTPs 

can be turned into actionable intelligence that supports 

decision-making and enhances adaptive planning for 

water utility operators. The modeling approach followed 

herein can be a part of a tool that improves chemical 

dosing and safeguards against spikes of critical water 

quality parameters. If this tool is integrated with 

forecasted raw water quality, it can enhance preparedness 



 

CEST2019_00238 

 

of the water utility operator against possible changes in 

the water quality influx. 
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