# One Step Industrial Enzymatic Technology of Starch Hydrolysis to Glucose 

Kvesitadze G. ${ }^{12,{ }^{*},}$, Khvedelidze R. ${ }^{2}$, Urushadze T. ${ }^{2}$, Kutateladze L..$^{2}$, Zakariashvili N. $^{2}$, Jobava M. ${ }^{2}$, Sadunishvili T. ${ }^{1,2}$<br>${ }^{1}$ Georgian National Academy of Sciences, 52 Rustaveli Ave., 0108, Tbilisi, Georgia<br>${ }^{2}$ Durmishide Institute of Biochemistry and Biotechnology, Agricultural University of Georgia. 240 David Aghmashenebeli Alley, 0159 Tbilisi, Georgia<br>*corresponding author: e-mail: kvesitadze@hotmail.com


#### Abstract

Starch degrading enzymes like amylase have received great attention because of their technological significance and economic benefits. As a result of screening of Durmishidze Institute of Biochemistry and Biotechnology collection of mycelial fungi, accounting 2500 individual strains, 39 strains poducing amylases have been revealed. Three promising enzyme producer strains of genus Aspergillus have been selected and technical preparations of their amylases obtained. The hydrolysis process of starch of different concentrations with the technical preparationof Aspergillus niger $\mathrm{p} 8-3$ at $68^{\circ} \mathrm{C}$ was studied. 94- $96 \%$ yield of glucose was reached at incubation of $30 \%$ and $40 \%$ starch with technical preparations of fungal enzymes during 8 hours.


Keywords: microscopic fungi, amylases, hydrolysis, glucose, technology

## 1. Introduction

Application of amylases ( $\alpha$-and glucoamylases) is an obligatory technological operation in the production of glucose-fructose syrup from starch containing substrates (wheat, corn, potato, maize, buckwheat peas, etc.have been prevalent for many decades and a number of microbial sources exist for the efficient production of this enzyme (Brahmachari et al., 2017). Various manufacturers use different approaches to starch hydrolysis using amylases but the principles are thesamegelatinization, liquefaction and saccharification of starch.In modern starch-based industries processof obtaining fermentable sugar glucose from starch containing raw materials by means of amylases is running in two steps, involving two enzymes of different origin: bacterial $\alpha$-amylase and fungal glucoamylase (Uthumporn et al., 2010). These two enzymes cannot be used simultaneously due to their different heat stability, with a challenge of thermostability of fungal amylases (Haki and Rakshit, 2003). Consequently, the selection of stable, operable at pasteurization and higher temperatures amylase preparation with both $\alpha$ - and glucoamylase activities will allow conducting a process of starch hydrolysis in one step, using only one enzyme preparation.

## 2. Materials and Methods

The screening was performed by deep cultivation in a liquid medium of following composition, \%: starch-6,0; $\mathrm{NaNO}_{3}-0,91 ; \mathrm{KH}_{2} \mathrm{PO}_{4}-0.1 ; \mathrm{MgSO}_{4} 7 \mathrm{H}_{2} \mathrm{O}-0,05, \mathrm{KCl}-0.05$, $\mathrm{FeSO}_{4}-0.0002$; malt sprouts -1.5 per 50 ml in $50-\mathrm{ml}$ Erlenmeyer conic flasks, on temperature-controlled rotary shaker (180-200 rpm) at $30^{\circ} \mathrm{C}$ for 72 hours. Determination of $\alpha$-amylase activity was conductedaccording to staining value of blue starchiodine complex. Glucoamylase activity was determined using a glucooxidase reagent (Bergmeyer H.V. and Bernt, 1974). To obtain enzymatic preparations, filtrate of culture liquid was cooled and glass filtered. Ethyl alcohol was added (3.5:1) to chilled enzyme solution under the conditions of gradual stirring. Pellet was removed by centrifugation ( $4000 \mathrm{rpm}, 10 \mathrm{~min}$ ) and lyophilized. Optimum conditions of starch enzymatic hydrolysiswas established according to yield of produced glucose atdifferent substrate enzyme ratio, pH , temperature and duration of hydrolysis

## 3. Results and Discussion

Durmishidze Institute of Biochemistry and Biotechnology (DIBB) owns a unique collection of mycelial fungi. As a result of screening, several strains poducingstable forms of amylases with different degree of $\alpha$ - and glucoamylase activities were revealed. Conduction of the fermentation processes at pasteurization temperature $\left(65^{\circ} \mathrm{C}\right)$ is of great importance as it minimizes pollution of the reaction medium. Temperature optima of amylases technical preparations from selected three microscopic fungi strains were estableished to be within the range $67-80^{\circ} \mathrm{C}$. Different strains of Aspergillus niger expressed different $\alpha$-amylase and glucosmylase activities at different temparatures. A. niger B-6: high $\alpha$-amylase activity at $67^{\circ} \mathrm{C}$ and glucoamylase activity at $62^{\circ} \mathrm{C} ; A$. niger $6-12$ : high $\alpha$-amylase activity at $72^{\circ} \mathrm{C}$, and glucoamylase activity at $65^{\circ} \mathrm{C}$; A. niger p 8 -3: high $\alpha$ amylase activity at $82^{\circ} \mathrm{C}$ and and high glucoamylase activity at $65^{\circ} \mathrm{C}$ (Fig.1).


Fig 1. Temperature optima of amylolytic activities of Aspergillus niger strains

Crude preparations of most active amylases were obtained from culture liquids by precipitation with ethyl alcohol.Exhaustive hydrolysis process of starch solutions of different concentrations ( $1,3,5,10,30$ and $40 \%$ ) with the enzyme preparation of Aspergillus nigerp 8-3 at $68^{\circ} \mathrm{C}$ was studied. In case of starch low concentrations(1-10\%) exhaustivehydrolysis of the substrateneeds $10-60$ minutes; in case of high concentrations,hydrolysistakes longer time. $96 \%$ yield of fermentable glucose was reached by hydrolyses of $30 \%$ and $40 \%$ starch with amylases enzyme preparation of $A$. niger p8-3 during 8 hours.Based on these data we have elaborated original technology of starch enzymatic hydrolysis. Initially, for gelatinization of insoluble in cold water starch, it is gradually heated to $80^{\circ} \mathrm{C}$ (thermal effect) and first portion of enzyme preparation is added. At this temperature, optimum for $\alpha$-amylase of our enzyme preparation partial hydrolysis of starch to dextrins and oligosaccharides during 15-20 minutes takes place. As a result, starch is liquefied with concomitant loss in viscosity. Further, system is cooled to $65^{\circ} \mathrm{C}$ and new portion of the enzyme preparation is added. Glucoamylase at optimum for its action temperature catalyses saccharification, resulting in the production of glucose ( $96 \%$ ) and disaccharide maltose (3-4\%).

## 4. Conclusions

Aspergillus nigerp8-3 strainhave been selected from microscopic fungi collection of DIBB, producing heat stable amylases with complete set of enzymes. A one step starch hydrolysis technology has been elaborated based on enzyme technical preparation containing heat stable $\alpha$ -amylase with optimum temperature of action at $80^{\circ} \mathrm{C}$ and glucoamylases with optimum temperature of action at $65^{\circ} \mathrm{C}$ capable to starch efficient hydrolysis to glucose with $94-96 \%$ yield. The offered technology is: ecologically friendly as compared to chemical hydrolysis; cost-effective as is based on application of one fungal enzyme preparation differently from alternative technologies based on the use of two enzyme preparations: bacterial $\alpha$-amylase and fungal glucoamylase.

Acknowledgement: The Study was supported by: The Science and Technology Center in Ukraine, Project \#7092 and Shota Rustaveli National Science Foundation, Project \#2017-59).

## References

Bergmeyer H.V. and Bernt E. (1974), In: Methods of Enzymatic Analysis, 3, 1205-1215.
Brahmachari G., Demain A.L. and Adrio J.L. (2017), Biotechnology of Microbial Enzymes, Chapter 1, 267-298.

Haki G.D., Rakshit S.K. (2003), Developments in industrially important thermostable enzymes: a review minor, Bioresource Technology, 89, 17-34.

Uthumporn U., Zaidul I.S.M. and Karim A.A. (2010), Hydrolysis of granular starch at sub-gelatinization temperature using a mixture of amylolytic enzymes. Food and Bioproducts Processing, 88, 47-54.

