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Abstract

This study evaluates the performance of three
adsorbents, ETS-4, MSC 3K 172, and Norit RB3, for a
68/32 %vol CH4/N, separation in biogas upgrading,
using a two-stage Pressure Swing Adsorption (PSA)
system modeled in Aspen Adsorption. Sensitivity
analysis indicated that adsorption pressure, desorption
pressure and adsorption time significantly influence
methane recovery and product purity. Among the
materials tested, ETS-4 demonstrated the highest N»
selectivity and most favorable breakthrough behavior,
followed by MSC 3K 172 and Norit RB3. Under
optimized conditions, ETS-4 achieved up to 85% CH4
recovery at 81% purity. These results provide a robust
benchmark for the development of high-efficiency PSA-
based upgrading systems.
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1. Introduction

Climate change and resource scarcity are among today’s
most critical global challenges, driving the need for
sustainable energy strategies [1,2]. At the international
level, climate neutrality targets set by the European
Climate Law and the Renewable Energy Directive
promote renewable energy recovery from waste streams,
including landfill gas (LFG). However, landfills remain
a major source of CHy4 emissions, accounting for 3—19%
of global CHj4 releases, due to long-term biogas leakage
[3]. Typically, LFG contains 45-60% CHa, 25-45%
CO3, and 2-5% N> [4]. Given CH4’s high global warming
potential (GWP=28) and energy content, its recovery
provides both environmental and energetic advantages.
Among various upgrading technologies, pressure swing
adsorption (PSA) and vacuum PSA (VPSA) stand out as
compact and energy-efficient solutions [5]. However,
separating CHy from N, is still particularly challenging
due to their similar molecular sizes (3.64 A for Ny, 3.80
A for CHy), leading to limited selectivity in traditional
adsorbents. While zeolites and activated carbon perform
well in Np-rich mixtures [6], CHs-rich streams require
N»-selective adsorbents to maximize methane recovery.

Promising kinetically or size-selective adsorbents - like
molecular carbon sieves (MCSs) [7] and Engelhard
Titanosilicate ETS-4 [8] - have emerged. MCSs favor
faster N, adsorption, while ETS-4 enables size-based
separation, though its thermal stability is limited. Despite
good N> selectivity, these materials often show lower
equilibrium capacities than traditional adsorbents. This
study evaluates three adsorbents - MSC 3K 172, ETS-4,
and Norit RB3 - for separating a binary CH4/N» mixture
(68% CHi, 32% N), in a simulated two-stage PSA
process. Literature data on equilibrium, kinetics, and heat
of adsorption [9] were used to identify the most effective
material for maximizing CHy4 recovery under realistic
operational conditions.

2. Methodology

Key physical properties of the studied adsorbent,
including bulk density, particle radius, and porosities,
were collected from the literature. Adsorption isotherms
for CHs and N, were regressed using the Langmuir
model to derive equilibrium parameters for simulation.
Breakthrough behavior was analyzed using Aspen
Adsorption on a 68% CHa4, 32% N binary mixture.
Breakthrough time, defined as the moment when N> at
the outlet reached 5% of the inlet concentration, was used
to determine optimal cycle durations.

Each material’s curve provided insight into kinetic and
equilibrium selectivity, with ETS-4 and MSC 3K 172
outperforming Norit RB3 in delayed breakthrough and
sharper concentration fronts.

The PSA process was modeled as a two-column cycle in
Aspen Adsorption™ (Figure 1), with each bed
alternating ~ among  pressurization, adsorption,
depressurization, and purge.
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Figure 1. Process configuration modeled in Aspen Adsorption.

The system used the built-in Cycle Organizer to manage
valve operation and timing. A one-dimensional plug flow
model with axial dispersion was adopted, assuming
isothermal conditions, ideal gas behavior, and thermal
equilibrium. Intra-particle mass transfer was modeled via
the Linear Driving Force (LDF) approach. Pressure
drops were calculated using the Ergun equation.
Multicomponent adsorption was represented using the
Extended Langmuir III isotherm. Dynamic simulations
were performed for each adsorbent to assess performance
in terms of CH4 recovery (R) and purity (P) reported in
Eq. 1.
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Key process parameters, such as adsorption pressure
(Pags), desorption pressure (Pges), adsorption time (tads),
desorption time (tq4es), and valve settings, were varied to
optimize the cycle confiduration.

3. Results and Discussion
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