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Abstract The management of hypersaline wastewaters, 

including desalination brines, poses significant 

environmental and technical challenges. Temperature 

swing solvent extraction (TSSE) offers a promising 

solution by exploiting the temperature-dependent water 

affinity of low-polarity solvents, typically amines. In this 

study, machine learning (ML) is applied to enhance TSSE 

by predicting the mutual solubilities of water and amines. 

Experimental data and amine properties were used to train 

eight ML models. A stacking ensemble strategy yielded 

high predictive accuracy, with R2 values of up to 97.8% for 

water-in-amine solubility and 95.8% for amine-in-water 

solubility. By integrating ML predictions with multi-

objective optimization, the study identified ideal amines 

and operational temperatures. 
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1. Introduction 

Desalination is expanding rapidly worldwide, with global 

contracted capacity exceeding 109.2 million cubic meters 

per day (Borgomeo, 2024). However, desalination 

processes produce large volumes of highly concentrated 

saline solution (brine), comparable to the freshwater 

recovered. Managing desalination brine, as well as other 

hypersaline wastewaters like produced water from oil and 

gas operations, landfill leachate, and some industrial 

wastewaters, is challenging due to the technical limitations 

and potential negative environmental impacts of 

conventional disposing methods (Shah et al., 2022). Rich 

in both water and valuable minerals, these streams hold 

potential for sustainable resource recovery, enabling the 

production of fit-for-purpose desalinated water and the 

extraction of critical minerals. In this context, temperature 

swing solvent extraction (TSSE) has emerged as a 

promising technology (Boo et al., 2019; 2020; Shah et al., 

2023), using low-polarity solvents with temperature-

dependent water affinity (typically amines) to separate 

water from hypersaline solutions. Process efficiency 

depends on feed salinity, amine properties, and operating 

temperatures, with amine-water mutual solubilities playing 

a crucial role. This study applied machine learning (ML) 

to enhance TSSE by developing models that support the 

selection of optimal amines and operating temperatures. 

2. Methodology 

The IUPAC-NIST solubility data for aliphatic amines with 

water (Góral et al., 2012a; 2012b) served as the primary 

data source for this study. Data preprocessing involved 

deduplication, removal of irrelevant data, and outlier 

removal. Physicochemical properties of the amines were 

retrieved from the PubChem database 

(https://pubchem.ncbi.nlm.nih.gov/) and incorporated into 

the dataset. Feature selection was performed using 

multicollinearity analysis to identify the most informative 

variables. By eliminating highly correlated variables, nine 

features were selected: operating temperature, molecular 

weight, partition coefficient, topological polar surface 

area, rotatable bond count, hydrogen bond donor count, 

hydrogen bond acceptor count, undefined atom 

stereocenter count, and molecular complexity. The final 

datasets consisted of 388 and 404 data points for the 

solubility of water in amines and amines in water, 

respectively. These datasets were randomly split, with 

75% of data allocated for training and 25% for test. 

Adaptive boosting (AdaBoost), categorial boosting 

(CatBoost), extremely randomized trees (ExtraTrees), k-

nearest neighbors (kNN), multilayer perceptron artificial 

neural network (MLP-ANN), random forest (RF), support 

vector regression (SVR), and extreme gradient boosting 

(XGBoost) were tested, with hyperparameters optimized 

via grid search. Model performance was assessed using 

mean squared error (MSE) and the coefficient of 

determination (R2). All modeling tasks were conducted 

using Python. The best-peforming algorithms were 

combined using a stacking ensamble method, which 

combines predictions from multiple models to enhance 

overall accuracy. A multi-objective optimization was 



carried out to identify optimal amines and operating 

temperatures. A trade-off strategy was employed to 

determine the most favorable solution that simultaneously: 

(i) maximizes the solubility of water in amine at low 

temperature (TL), (ii) minimizes the solubility of water in 

amine at high temperature (TH), and (iii) minimizes the 

solubility of amine in water at both TL and TH. Candidate 

TL values ranged from 5 to 30 °C and TH from 40 to 80 °C. 

The optimal low temperature (TL*) and high temperature 

(TH*) were determined individually per amine. The trade-

off scores for water in amine (Si) and amine in water (si) 

were calculated using Eqs. (1) and (2), respectively. 

Si = max[Xi(TL)] – min[xi(TH)]                                       (1) 

where Xi(TL) and xi(TH) represent the solubility of water in 

the i-th amine at the TL and TH temperatures, respectively. 

si = Yi(TL*) + yi(TH*)                                                      (2) 

where Yi(TL*) and yi(TH*) are the solubility of the i-th 

amine in water at TL* and TH* temperatures, respectively. 

3. Results 

All models demonstrated strong predictive performance 

for the solubility of water in amines, achieving an R2 of up 

to 97.1% on the test set. The stacking approach further 

enhanced prediction accuracy, yielding the highest 

performance with an R2 of 97.8% on the test set when 

combining SVR and CatBoost models. For predicting the 

solubility of amines in water, ensemble tree-based 

algorithms outperformed other models, reaching an R2 of 

up to 94.3% on the test set. By integrating ExtraTrees, 

CatBoost, and XGBoost, the stacking ensamble improved 

performance further, achieving an R2 of 95.8% on the test 

set. Based on the results of the proposed multi-objective 

optimization (Figure 1), N,N-Dimethylcyclohexylamine 

and N-Ethylcyclohexylamine were identified as the most 

suitable amines for the TSSE process.

  

Figure 1. Trade-off scores for (a) water in amine (Si) and (b) amine in water (si). The preferable trade-off scores are 

enclosed in the red closed curve. 

4. Conclusion 

ML models can accurately predict the mutual solubilities 

of water and amines. Integrating ML model outputs with 

multi-objective optimization provides a valuable tool for 

selecting optimal amines and operating temperatures for 

TSSE. Continued advancements in ML-enhanced TSSE 

have the potential to improve treatment efficiency and 

further expand the prospects for energy-efficient, cost-

effective desalination of hypersaline brines. 
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