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Abstract Sars COVID-19 epidemic continues to represent 

a relevant and current topic, which is of concern mainly 

with respect to possible variants. Predictive monitoring can 

address the need to reduce the risk of spreading the virus, 

but it needs to rely on non-invasive, as well as effective 

and inexpensive strategies. Wastewater-Based 

Epidemiology (WBE) fits into this context, representing an 

approach to surveillance of diseases and early warning for 

any outbreaks of pathogenic viruses, which provides 

results relating to the trend of the epidemic in the form of 

time series. An innovative approach that allows to infer 

information on the spread of Sars COVID-19 is to 

transform the data of these time series into visibility graphs 

using the so-called visibility algorithms. The connective 

structure of the visibility graph inherits many properties of 

the starting time series and allows to extract nontrivial 

information on the behavior of the system using 

topological metrics of the Complex Network Theory 

(CNT). In this work, the time series of Sars COVID-19 

corresponding to a 12-month period for a treatment plant 

serving a large size basin is analyzed in order to provide 

useful data on the spread of the epidemic. 
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1. Introduction 

The severe acute respiratory syndrome from SARS 

COVID-19 originated in late 2019 and spread rapidly 

around the world, causing cascading deaths and 

uncertainty for the future of global and national 

economies. Italy was among the first countries to interface 

with this state of emergency, supporting the development 

of various strategies for monitoring and controlling the 

virus. Initially, the monitoring of the virus was done 

through molecular and antigenic tests. Their use was, 

however, often questioned both for their costs and for the 

significant percentage of false negative results (Zhang et 

al., 2021). A significant revolution in monitoring 

techniques occurred with the discovery that traces of 

SARS COVID-19 were detectable in wastewater (La Rosa 

et al., 2020). This allowed to monitor entire communities 

simultaneously using non-invasive and inexpensive 

procedures, such as the Wastewater-Based Epidemiology 

(WBE) approach (Sims & Kasprzyk-Hordern, 2020), a 

technique that analyses wastewater to detect the presence 

of chemical or biomarkers (e.g., drugs, alcohol, etc.).  

The approach was tested for monitoring SARS-CoV-2 and 

to detect traces of viral RNA in wastewater. In Italy, this 

happened within the project called SARI (Environmental 

surveillance of Sars-cov-2 through urban wastewater in 

Italy) (Rosa et al., 2021) started on the 1st of July 2020, 

which provided for an environmental surveillance activity 

for Sars Cov-2 based on the WBE model.  

The WBE technique provides, downstream of the analysis, 

many data grouped in the form of time series, from which 

it is important to extract as much information as possible 

on the trend of the phenomenon in order to be able to 

interpret it and to develop adequate control measures. 

The analysis of the time series is also possible through an 

innovative approach, which involves transforming the 

starting time series into a visibility graph through the so-

called visibility algorithms (Lacasa et al., 2008), in order 

to identify specific characteristics of the phenomenon. The 

analysis of the visibility graph, extracted from the time 

series, is then analysed with metrics proposed by the 

Complex Networks Theory (CNT).  
In this work, the time series of viral RNA concentration 

collected at a wastewater treatment plant (WWTP) located 

in Campania Region (Italy) is transformed into visibility 

graphs and then studied by using CNT metrics (Newman, 

2010; Giustolisi et al., 2017), in order to extract useful 

information on the trend of the phenomenon that cannot be 

detected by the analysis of the time series alone, and 

validate this approach as a tool for the analysis of other 

substances for which concentration values over time, in 

specific sections, are available. The main objective is to 

produce results that allow to support virus control activities 

and also suggest ad-hoc monitoring measures.  

2. Complex Network Theory (CNT) 

2.1. Basic Concepts 

The complex network theory (CNT) provides a novel 

perspective in the study of complex systems, associating 



the latter to graphs, i.e., a set of nodes, which represent the 

components of the system, connected to each other through 

links, which represent the relationships between the 

components. A graph is a mathematical object G= (N, L) 

where N = {1, . . ., n} is the set of nodes of G, and L = {l1, 

. . ., lm} is the set of links of G. The adjacency matrix A is 

the most used representation of a graph G and indicates 

whether couples of nodes are connected or not in the graph, 

and is defined by the conditions, 

𝑎𝑖𝑗 = {
1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐿

0 𝑖𝑓 (𝑖, 𝑗) ∉ 𝐿
  (1) 

Graphs can be directed, if the links have a direction, and 

undirected otherwise. For indirect graphs, the relationship 

between nodes is symmetric, i.e., given two nodes (i, j) є 

G, lji = lij, while for direct graphs lji ≠ lij. For undirected 

graphs, the adjacency matrix is symmetric with respect to 

the main diagonal, while for direct graph it is not 

necessarily. For the purposes of the analysis proposed, it is 

necessary to define some basic concepts and metrics of the 

CNT (Newman, 2010). 

Two nodes are adjacent if they are connected by a link and 

the number of connections of a node i, denoted by ki, 

represents its nodal degree. The average number of links 

per node in the graph is the Average degree (<k>).  

A path is a sequence of nodes {n1, n2, …, nn} connected by 

links and a shortest path represents the path with the 

minimum number of links between two nodes (i, j). The 

greatest shortest path refers to the diameter (D) of the 

graph G. The Average path length (APL) is the average of 

the shortest paths between all the nodes in the network.  

The clustering coefficient of a node i (Ci) (Watts & 

Strogatz, 2011) measures to what extent its neighboring 

nodes tend to form a complete graph, i.e., a graph where 

each pair of nodes is connected by a link. The global 

clustering coefficient C(G) of the graph is the average of 

the local values Ci.  

Several models have been developed in order to classify 

complex systems according to its connectivity structures. 

Erdos and Reny (1959) proposed random networks, i.e., 

networks characterized by a high homogeneity, with a 

degree distribution randomly distributed around an 

average value. Watts and Strogatz (2011) proposed small-

world networks as systems similar to random ones (i.e., 

very homogeneous) but dominated by the so-called small 

world effect (Milgram, 1967) about six degrees of 

separation. In these networks, the most part of the nodes 

are not close to each other, but however each component 

in the network can reach each other through a short 

sequence of links. Barabasi and Albert (1999) proposed the 

scale-free networks, characterized by non-homogeneous 

nodal degree distributions, i.e., networks where many 

nodes have a low degree and few nodes (called hubs) have 

a high degree. 

Small world and random networks, characterized by a 

homogeneous degree distribution (Poisson), present a 

significant structural resistance to both random failures 

and intentional threats, while scale free networks, 

characterized by a heterogeneous degree distribution 

(Pareto) show a very high structural resistance to random 

failures but a weak resistance to intentional threats. 

2.2. Visibility Algorithms 

The visibility algorithm is based on the idea of visibility 

between points/nodes, which correspond to the 

measurements of specific quantities within the series. 

Considering a time series composed of data of different 

heights (Figure 1-a) forming a histogram, it will be 

possible to draw links (red lines in Figure 2-b) between the 

various measured values only if there is visibility between 

them. The visibility lines thus traced represent the links of 

the visibility graph (Figure 1-c) associated with the time 

series. 

 

Figure 1. Example time series (a); visibility lines between 

points of the time series (red) (b); visibility graph of the 

starting time series (c). 

In mathematical terms, if {𝓍(𝑡𝑖)}𝑖=1…𝑁  is a time series of 

N data,  the natural visibility algorithm (NVg) (Lacasa et 

al., 2008) assigns each data of the series to a node of the 

visibility graph. Two nodes, i and j, in the graph are 

connected if a straight line can be drawn in the time series 

joining x(ti) and x(tj), which does not intersect any 

intermediate datum at height x(tk), i.e., the following 

geometric criterion is satisfied within the time series, 

𝓍(𝑡𝑘) < 𝓍(𝑡𝑖) + (𝓍(𝑡𝑗) − 𝓍(𝑡𝑖))
𝑡𝑘−𝑡𝑖

𝑡𝑗−𝑡𝑘
  (2) 

The graph associated with the time series is always: 

• connected: each node sees at least its closest 

neighbors (left and right); 

• undirected: there is no defined direction in the 

links; 

• invariant under affine transformations of the 

series: it is invariant under horizontal and vertical 

axis scaling, as well as horizontal and vertical 

translations; 

• lossy: some time series information is inevitably 

lost in the mapping due to the fact that the 



network structure is completely determined in the 

adjacency matrix, and for two periodic series with 

the same period but different intensities, for 

example, there would be the same graph. 

3. Methodology 

The present work proposes an application of the visibility 

algorithms (Iacobello et al., 2018; Lacasa et al., 2008) to 

the time series of the Sars COV-2 concentration data, 

detected in the influent to the WWTP of Villa Literno, in 

Campania region (Italy). The WWTP covers a population 

of 631.714 population equivalent (PE) and the time series 

refers to samples collected from December 2021 to 

September 2022, whose data were obtained within the 

SARI project (Rosa et al., 2021), aimed at environmental 

surveillance of Sars COVID-2 in Italian sewer. 

The visibility graph corresponding to the starting series is 

analyzed using the CNT tools, in order to capture useful 

information on the spread of the epidemic that cannot be 

detected by the analysis of the time series alone. Once the 

time series is transformed into a visibility graph, it is 

possible to obtain the adjacency matrix and then evaluate 

the previously defined CNT metrics. Finally, the 

association of the degree distribution of the graph to one of 

the models proposed in the literature can be useful in 

defining the behavior of the epidemiological phenomenon. 

4. Results and discussion 

Figure 2-a plots the starting time series of the analyzed data 

as histogram and Figure 2-b reports the visibility graph 

corresponding to the time series. The graph is 

characterized by many poorly connected nodes and few 

most connected nodes (hubs), generally corresponding to 

the highest concentration values in the time series. Table 1 

reports relevant data of the basin serving the WWTP and 

the values of the CNT metrics. 

Table 1. Relevant Data and CNT metrics for the visibility 

graph of the WWTP of Villa Literno. 

# 

nodes 

# 

links 

<k> diameter Average 

CC 

APL 

75 236 6.29 6 0.787 2.94 

 

Although the presence of hubs shortens the distances 

between pairs of nodes in the network, these elements do 

not create a huge gap, in terms of degree, between nodes. 

The only exception is represented by nodes 26 and 56, with 

more than 20 connections.  

Degree and clustering coefficient for each node are shown 

in Figure 3. The higher the number of connections of a 

node, the lower its clustering coefficient, probably due to 

the fact that high values of the ordinate prevent visibility 

between neighboring nodes, and therefore the formation of 

triangles. The high values of the clustering coefficient 

(CC=0.787) and the values of the average degree 

(<k>=6.293) denote a very interconnected system, and the 

presence of the two hubs facilitates the connection between 

distant nodes even over short distances, as confirmed by 

the Average Path Length value (APL=2.944). Despite this, 

the diameter value is quite high considering the size of the 

network (D=6), although perfectly within the range 

defined by Milgram (Milgram, 1967) for small-world 

networks, based on the six degrees of separation in social 

networks. 

 

Figure 2. Starting time series of the WWTPs of Villa 

Literno as histogram (a) and visibility graph corresponding 

to the time series (b). 

 

Figure 3. Degree (a) and clustering coefficient (b) for each 

node of the graph. 

This combination of values of the metrics, which reflects 

characteristics of very homogeneous systems (random), 

indicates that the degree distribution of the graph follows 

a Poisson's law (Figure 4). Most of the nodes have similar 

degrees and are clustered around decreasing average 

values, meaning that people live in a space that influences 

their habits and act mainly over short distances. İt is 

possible to state that the spread of the epidemic identifies 

the graph analyzed as responding to spatial network, where 

the spatial features make it probable that the random 

contamination curve is repeated with decreasing average 



values since the phenomenon is decreasing over the 

analysed period, i.e., the concentration values detected in 

the time series are, however, dependent on the values of 

their neighbours. The presence of the two hubs on the final 

tail of the curve indicates a low probability of other 

contagion events, or in any case of minor magnitude. 

 
Figure 4. Degree distribution of the visibility graph. 

This first approach to the study of Sars-Covid 2 time series 

through the use of visibility algorithms was useful for 

defining the characteristics of the phenomenon not 

previously defined, or at least not defined with standard 

techniques. The fact that this phenomenon responds to a 

spatial network system has already been previously 

announced in the literature (Sharma et al., 2021) using the 

analysis of social and contact networks.  

However, the implications for more in-depth studies are 

promising.  

5. Conclusions 

The present work proposes an alternative approach for 

studying the Sars-Covid 2 time series. The visibility 

algorithm approach is used to convert the time series of 

RNA concentration detected in the influent to a WWTP 

into visibility graph for analyzing it with CNT tools and 

capture information on the behavior of the epidemiological 

phenomenon that cannot be detected by the analysis of the 

time series alone.  

The work evaluates the feasibility of the approach for the 

study of the phenomenon proposing a first preliminary 

analysis, which allowed to evaluate the variability of the 

phenomenon and to associate it to random/small world 

networks, i.e., homogeneous systems strongly influenced 

by spatial constraints. This initial information about the 

behavior of the phenomenon could be of support to the 

planning of control and monitoring strategies. In this 

regard, it can be concluded that the work opens towards 

future perspectives in the in-depth analysis of both the 

same phenomenon (i.e., Sars-COV-19 spread) and that 

involving different substances detectable in wastewater. 
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