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Abstract A multitask deep neural network (DNN) is 

developed to simulate the ozonation of oil-drilling 

cuttings (ODC) and is interpreted through a technique of 

explainable artificial intelligence (XAI) to provide 

knowledge about the experimental conditions that will 

maximize the decontamination of ODC. On a semi-batch 

bubble flow column, ozonation experiments of ODC are 

carried out after pretreatment with synthetic seawater 

(SW) and the anionic surfactant sodium dodecyl sulphate 

(SDS). The performance of ozonation experiments is 

evaluated by measuring the removal efficiency of the 

total organic carbon (TOC). The experimental data are 

used for training and testing an DNN that can predict 

accurately the TOC removal efficiency of the ozonation 

process as well as the values of different variables such 

as pH, oxidation-reduction potential (ORP), temperature 

(T), pressure drop (ΔP), based on the values of the input 

variables of the model. The acquired model is interpreted 

through the Shapley Additive explanations (SHAP) 

method, an important advancement in the field of 

machine learning interpretation provided by XAI, 

regarding the significance of the models’ input variables 

in the TOC removal efficiency. This step aims at 

establishing the experimental conditions that lead to the 

highest remediation rate. 
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1. Introduction 

Oil drilling cuttings (ODC) are the main wastes 

generated during the  oil/gas exploration and extraction 

(Talbi et al, 2009), where the oil content may reach up to 

5-20% by weight, in dry basis. The most common 

methods used for the removal of oil from  ODC are: the 

surfactant-enhanced washing (Yan et al,2011),  the 

thermal (Falciglia et al, 2011) and microwave (Robinson 

et al, 2011) desorption / evaporation the solidification / 

stabilization (Leonard et al, 2010), the phytoremediation 

(Ji et al, 2004),  and the bioremediation (Azubuike et al, 

2016). 

During the last years, the ozonation has emerged as a 

promising advanced oxidation process (AOP) for the 

degradation of petroleum products from heavily 

contaminated soils and sludges (Wang et al, 2017). One 

type of reactors used for the ozonation of wastewater or 

aqueous suspensions of solids (slurries), because of its 

simple construction and maintenance, is the semi-batch 

bubble columns (Sun et al, 2020). The inherent 

complexity of the fluid dynamics and chemical reactions 

occurring within those multiphase reactors renders their 

simulation a complex and challenging task. Traditional 

models, such as analytical and computational fluid 

dynamics (CFD) models, have been widely used to 

describe the multiphase flow behavior and reaction 

kinetics in these systems (An et al, 2020). However, 

these models often have limitations in accurately 

predicting the complex behavior of the system due to the 

assumptions and simplifications made during their 

development. 

Data-driven models, such as artificial neural networks 

(ANNs) or more intricate ones such as deep neural 

networks (DNNs), offer an alternative approach on 

simulating multiphase reactors. These algorithms 

provide a non-linear mapping between input and output 

variables and are also useful in providing cross-

correlations among these variables. Moreover, compared 

to the empirical curve-fitted models, ANNs are relatively 

less sensitive to noise and incomplete information. 

Because of their advantages, during the last years, 

several attempts have been devoted to the application of 
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ANN to numerical modeling and control of multi-phase 

reactors, such as bubble column reactors (Shaikh et al, 

2007). 

In the present work, a multitask deep neural network 

(DNN) is developed to simulate the ozonation of ODC. 

Specifically, the DNN evolved is a feedforward ANN 

with multiple layers that is trained through multi-task 

learning. Multi-task learning is a training paradigm in 

which machine learning models are trained with data 

from multiple tasks simultaneously, using shared 

representations to learn the common ideas between a 

collection of related tasks. The DNN has undergone 

training and testing by using experimental data, and it is 

capable of making highly accuracy predictions (> 99%). 

The model can perform predictions in five distinct tasks, 

which include the prediction of: TOC Removal 

Efficiency in solid phase, pressure drop, pH, reduction-

oxidation (redox) potential and temperature. Finally, the 

issue of interpretability in neural networks, often referred 

to as their “black box” character, has been tackled using 

the SHAP method. This technique is a part of the XAI 

(eXplainable Artificial Intelligence) toolbox and is 

employed to assess the influence and effect of input 

variables to the TOC removal efficiency. 

2. Materials and methods 

2.1 Ozonation in a bubble flow reactor: experimental 

Water-saturated ODC samples collected from off-shore 

wells was sealed in a container and used for testing.  Tri-

distilled water and chemicals of analytical grade were 

utilized for the preparation of the solutions used for the 

pre-treatment of ODC and chemical analyses: 

magnesium sulphate, MgSO4 (Carlo Erba), calcium 

chloride, CaCl2 (Merck), potassium chloride, KCl 

(Merck), sodium chloride, NaCl (Merck), sodium 

dodecyl sulphate, SDS (Merck), potassium dichromate, 

K2Cr2O7, sulfuric acid H2SO4, Mercury sulphate (Penta), 

Silver sulphate (Penta), Hydrochloric acid (Sigma-

Aldrich), Acetone (Honeywell), Hexane (Honeywell), 

Tetracontane (Merck), Florisil (Sigma-Aldrich). 

Artificial seawater (SW) containing 12.85 g/L MgSO4, 

1.0154 g/L CaCl2, 2.6181 g/L KCl, 27.5419 g/L NaCl 

was prepared and enriched with SDS in three 

concentrations: 0 %, 0.2%, and 0.5% w/w. Samples of 

ODC were mixed with the abovementioned SW solutions 

in various ratios (1:2, 1:3, 1:4, 1:5), placed in an 

ultrasonic bath (Witeg WUC-D 3.3 40 kHz), and 

sonicated for 30 min at 30oC. 

 

The pre-treated suspension of ODC diluted in SW is 

placed inside a poly methyl methacrylate (PMMA) 

cylindrical column of inner diameter 3 cm, height 50 cm, 

and equipped with inlet/outlet ports and four side ports 

for sampling. For ozone production, bottled oxygen is 

fed to an ozone generator at a flow rate regulated (0-5 

L/min) through a mass flow controller. The ozone-rich 

gas is humidified by passing through a gas washing bottle 

and then injected into the PMMA column through a 

cylindrical porous diffuser. The concentration of the 

produced ozone is detected at the inlet port with an ozone 

analyzer. The gas pressure is measured at the inlet and 

outlet ports with absolute pressure transducers. The 

outflowing gas is injected through a column packed with 

silica gel to remove moisture and then through an ozone 

destructor for safety reasons. There are also sensors that 

measure the temperature, the pH and the redox potential 

every second during the ozonation time. After every 15 

min, 5 g of suspension was collected from a sampling 

port and centrifuged at 11000 rpm for 15 min. The 

supernatant was then removed and the residual ODC was 

left under a hood for 16 h to air dry. The total organic 

carbon was measured in dried samples with an organic 

carbon analyzer (Multi N/C 2100 S with auto-sampler 

AS 60, Analytik Jena). 

 

2.2. Development of a multitask neural network 

In general, developing an ANN involves several steps, 

from data preparation to model architecture, training, 

validation, and testing. In our case, the data preparation 

includes selecting the appropriate dataset, cleaning and 

formatting the data, splitting it into training and testing 

sets. The dataset utilized in the multitask model, is 

composed of results and data recordings from 18 

experiments. Each experiment involves 3335-4002 data 

points. Each datapoint distinguishes itself for the 

treatment time (𝑡) , the ozone concentration (𝐶𝑂3
), the 

pressure drop (𝛥𝑃), the temperature (𝑇), the  𝑝𝐻, the 

redox potential (𝑂𝑅𝑃), the TOC Removal Efficiency in 

solid phase (𝑅𝐸𝑆) and there are also the values of the 

initial TOC concentration of the ODC (𝐶𝑇𝑂𝐶,𝑖𝑛𝑖𝑡), the 

SDS concentration used (𝐶𝑆𝐷𝑆),  the flow rate of oxygen 

(𝐹𝑂2), the mass of treated ODC (𝑚𝑂𝐷𝐶) and the volume 

of artificial sea water (𝑉𝑠𝑤) mixed with ODC, the initial 

temperature (𝑇𝑖𝑛𝑖𝑡), the dilution ratio (𝐷𝑅) as well as the 

liquid height before (𝐻𝐿) and after injecting gas (𝐻𝐿
′ ). All 

the values of these parameters of the experiment are 

utilized in the multitask neural network in order to help 

us in elucidating the physicochemical properties 

governing the ozonation process and consequently, in 

establishing the experimental conditions that lead to the 

highest degree of ODC remediation. It is significant to 

note that during the very first experimental trials, the 

absence of certain sensors from the experimental setup 

resulted in the existence of NaN values in the 𝑝𝐻, 𝑂𝑅𝑃  
variables. 

 

 The dimensions of the experimental dataset are 

(62031,16), with eleven of the sixteen variables 

designated as input variables for the model 

(𝑡, 𝐶𝑂3
, 𝐶𝑇𝑂𝐶,𝑖𝑛𝑖𝑡 , 𝐶𝑆𝐷𝑆,𝑚𝑂𝐷𝐶 , 𝑉𝑠𝑤 , 𝑇𝑖𝑛𝑖𝑡 , 𝐻𝐿 , 𝐻𝐿

′ , 𝐹𝑂2
, 𝐷𝑅), 

while the remaining five variables (𝑅𝐸𝑆, 𝛥𝑃, 𝑇, 𝑝𝐻, 𝑂𝑅𝑃) 

concern the output variables that are expected to be 

predicted by the neural network. The available dataset is 

divided, randomly, into training and testing sets. The 

training set is composed of 55827 data points, whereas 

the testing set includes 6204 data points.  

 



 

  18th International Conference on Environmental Science and Technology 

Athens, Greece, 30 August to 2 September 2023 

 
The architecture of the model chosen for simulating the 

ozonation experiment is a feed-forward multilayer neural 

network, which is reported as universal approximators 

(Hornik et al, 1989), trained with multitask learning. 

Multitask learning is a technique which aims at 

improving machine learning efficacy by simultaneously 

co-modelling multiple properties within a single model. 

This approach can provide several advantages, such as 

improved performance on each task, reduced training 

time, better generalization to new tasks, and it can 

contribute to reduce the overfitting (Zhang et al, 2018). 

In our model, the multitask learning was performed by 

hard parameter sharing of hidden layers. Specifically, 

hard parameter sharing is applied by sharing the hidden 

layers between all tasks, while keeping several task 

specific output layers. The number of layers, as well as 

the number of nodes are chosen by the trial and error 

method. 

 

The training of the multitask neural network is performed 

through backpropagation algorithm. The process 

involves passing the input data of the training set forward 

through the network to produce the five outputs of the 

tasks defined. Each output is associated with its own loss 

function which measures the error noted between the 

produced output and the desired value.  For each task, the 

loss function is the mean squared error, which in the 

context of a task with NaN values is modified to ignore 

these examples. The total loss of the network is formed 

as a weighted sum of the individual losses of the tasks, to 

ensure that during training the model prioritizes the tasks 

that require more attention. During backpropagation, the 

gradient of the total loss is computed with respect to the 

weights of the network and then used to update the 

weights by using the optimization algorithm Adam. 

These feed-forward propagation and the back 

propagation steps are repeated iteratively (epochs) until 

a global (or an accepted local) minimum of total loss 

function is obtained. After a sufficiently large number of 

trainings cycles, the network will usually converge to 

some state where the error of the calculations is quite 

small. The multitask neural network is then utilized to 

make predictions using the final weights related to the 

network's neurons. 

 

Once the model has been trained with the training data, 

the next step is to evaluate its performance using the 

testing data. The purpose of testing is to evaluate the 

performance of the model on data that have not been used 

before, and ensure that the model generalizes well to new 

examples. The DNN is tested on 6204 new examples that 

comprise the testing set, and its performance is evaluated 

through the developed loss functions and the coefficient 

of determination 𝑅2. The examples in the test set that 

contain NaN values for the variables 𝑝𝐻, 𝑂𝑅𝑃 are 

ignored from the metric 𝑅2. 

 

The last step in our approach is the interpretation of the 

performance of the multitask model.  This analysis is 

accomplished by using an agnostic interpretation 

technique. Specifically, the analysis is carried out by 

investigating a small part of training set using the SHAP 

values (Lundberg et al, 2017).  With the aid of these 

values, the importance of each input variable, along with 

its effect on the output variables is obtained. In this 

manner, the significance of the effect of each operational 

variable on the remediation efficiency is quantified by 

providing knowledge that could contribute to the 

ozonation optimization. For our neural network, we used 

KernelShap that is based on LIME (Ribiero et al, 2016). 

 

3. Results and discussion  
 
3.1 Performance of the multitask neural network 

The neural network that attains the best performance in 

the testing procedure is a multitask neural network, with 

3 shared hidden layers with 1024,512,256 nodes each 

layer and activation function ReLu. The task specific 

layers are 4 layers for the first and fifth task, 3 layers for 

the second task and 2 layers for the third and fifth tasks. 

The last layer for each task is composed of one node, 

characterized by the linear activation function, and 

correspond to the outputs of the model. Whereas, the 

nodes of the rest task specific layers are 1024,624,124 for 

the first task, 624,182 for the second task, 162 for the 

third task, 162 for the fourth task and 1024,824,624 for 

the fifth task. Its performance in new data of the testing 

set is illustrated in Table 1. 

 

 Table 1. The performance of the multitask neural 

network in the testing process.  

 

 3.2 Interpretation of the ANN model with regard to 

TOC removal efficiency 

Following the overall model performance, attention was 

paid on the estimated SHAP values from the ANN model 

for the first task (Figure 1). Each point on the summary 

plots a SHAP value of an instance per variable and is 

coloured according to the value of the variable, going 

from low (blue) to high (red) values. Their position to the 

right or left of the vertical axis indicates if the 

corresponding values favour (positive SHAP values) or 

decrease (negative SHAP values) the values of TOC 

removal efficiency. Also, the variables are ranked in 

accordance to their significance and stacked vertically 

(Figure 1). 

 

According to the neural network predictions, the most 

significant input variable that affect strongly the 

prediction is the treatment time. Over time, the TOC 

removal efficiency is increasing. The second variable, in 

terms of importance, according to the SHAP method, is 

the concentration of SDS.  It appears that, the presence 

 Loss 

Function 

Coefficient of 

determination 

Task 1 1.5e-05 0.9997 

Task 2 0.00016 0.9938 

Task 3 9.46e-06 0.9995 

Task 4  2.87e-05 0.9991 

Task 5  0.00026 0.9956 
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of SDS does not mean that the 𝑅𝐸𝑆 will shift to higher 

values. In contrast, the higher the SDS concentration in 

seawater leads to lower prediction of 𝑅𝐸𝑆 (Figure 1). The 

total liquid height after the gas injection (namely the gas 

holdup) is the next more important variable, and its 

higher value leads to lower level of TOC removal 

efficiency. The opposite relation seems to be valid  

between the initial temperature and 𝑅𝐸𝑆. The higher the  

𝑇𝑖𝑛𝑖𝑡  , the higher the TOC removal efficiency from solid 

phase. On the other hand, for small values of the sea 

water volume, low oxygen flow rates favor the 

remediation of the ODC. Regarding the mass of ODC, its 

higher values lead to higher predictions of 𝑅𝐸𝑆. The same 

effect appears for the variables 𝐶𝑇𝑂𝐶,𝑖𝑛𝑖𝑡  , 𝐶𝑂3
 on the TOC 

removal efficiency in solid phase. On the other hand, no 

clear picture is evident for the effect of 𝐷𝑅, 𝐻𝐿  on 𝑅𝐸𝑆. 

 
Figure 1. Interpretation of the significance and 

individual effect of each input variable on the TOC 

Removal Efficiency in solid phase. 
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