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Abstract Nowadays, the link between air pollution and 

covid-19 is proven beyond doubt in the literature with key 

pollutants being particulate matter and CO2. Our team has 

been involved in the development of reliable air quality 

sensing devices using low-cost sensors measuring 

particulate matter, differential pressure, humidity, and 

temperature. We have developed a new measuring device, 

that detects with high reliability CO, CO2, humidity, and 

temperature but also viruses in ambient air. The new 

architecture consumes less power and supports the 

integration of industrial CO2 sensors operating at 12 to 24 

volts and using the industrial 4-20mA protocol. 

Furthermore, five novel near-real-time indices were 

developed to model risks that endanger public health 

indoors: a) risk of infection, b) ventilation efficiency, c) 

aggregated exposure d) AQI and e) congestion. Real-time 

data streams from six devices (three PM ones and three 

C2O2O ones, in pairs) that were deployed at a municipality 

building in the center of Athens, Greece, during a 5-month-

long pilot application were used for the indices calculation 

also generating real-time warnings. Results show that 

congestion exceeds the limits frequently in the cashier area 

on the third floor during visitor hours while outdoor 

pollutants penetrate indoors from a busy road. 

Keywords: low-cost sensors, infection risk, aggregated 

exposure, ventilation efficiency, middleware 

1. Introduction 

Recent developments link covid-19 to poor air quality. The 

authors of [2] found that when the daily concentration of 

PM2.5 rises above 50ug/m3, the number of cases doubles 

while [1] reports that during long term exposure, even 

1ug/m3 raise in daily concentration of PM10 leads to an 

8% increase in mortality rate with 98% confidence level. 

Le Quere et al. [3] mentioned that although before Covid-

19 pandemic, the emissions of CO2 were increasing by 

about 1% in a yearly basis [4], the day-to-day global CO2 

releases, was decreased by -17% by April 2020 (vs 2019). 

On the other hand, indoor emissions such as VOCs were 

found to have grown by 30% during the first lockdown. 

The above issues make reliable measurement and control 

of air pollution a priority in the policy making agenda. 

Low-cost sensor technology[15], low-noise electronics, 

low-power communication, real-time processing, analytics 

and AI  allow for the measurement of air pollution ad hoc 

and in great spatio-temporal resolution [5], which is 

required for advanced processing and analytics functions, 

such as the estimation of aggregated exposure. 

Poorly ventilated indoor spaces pose a risk for airborne 

transmission of SARS-CoV-2. The work of [6] showed 

that improving ventilation rate to levels with 

CO2 <1000 ppm was independently associated with a 97% 

decrease in the incidence of TB among contacts while [7] 

measured CO2 levels in a multiple areas in an acute care 

hospital to assess the adequacy of ventilation and proposed 

a limit of 800ppm. Although CO2 concentrations have 

been proposed as a metric of infection risk by CDC in the 

USA, REHVA in Europe and EMG/SPI-B in the UK, they 

constitute only one strategy that should be implemented 

together with other CDC recommendations[8]. CO2 

sensors provide absolute concentration readings in parts 

per million (ppm), which is indicative of the occupancy 

[9,10]. However, reliably correlating CO2 levels with the 

actual occupancy is difficult due to the high variability and 

second, high latency of the CO2 sensor responses while 

uncertainties in the estimation errors have been reported in 

several cases.  

Historical PM2.5 exposures are positively associated with 

higher county-level COVID-19 mortality rates [1]. While 

it may be acceptable for individuals to be exposed to a 

higher concentration of certain pollutants for a short time, 

this may not be the case in the long run. Because of that 

pollution thresholds may vary between different time 

scales; Average measurement benchmarks for 1-hour, 8-

hour, and 24-hour intervals provide more accurate air 

quality data, which in turn allows individuals and 

governments to make better health and safety decisions. 

This work addresses the above issues by implementing an 

end-to-end sensor-driven air quality and infection risk 

estimation approach based on a) a novel reliable real-time 

CO2 and CO sensing device that uses low-cost sensor 

technology, b) novel indices that combine a ventilation 

strategy, an infection factor based on average daily 

concentration and an estimator of occupancy using a 

simple HMM modelling approach that also provides a 

theoretical bound in estimation uncertainty. 

2.1. Experiment 



The Liossion 22 building was built in the 70s; it is located 

between two very busy roads with a lot of traffic. It offers 

services such as council tax payment and licensing  

outdoor drinking and dining. Apart from its large number 

of employees/public servants, it accommodates on a daily 

basis a large number of visitors that want to use the above 

services. As a result, congestion is often noted especially 

at the beginning at the end of the month when payments 

are due. A wireless sensor network comprising of six air 

quality devices for monitoring reliably particulate matter, 

CO2, CO, humidity and temperature was installed in three 

selected locations/spatial zones in the building for 

monitoring air quality. These were:  

* the ground floor public entrance, 

* the 2nd floor council tax service 

* the 3rd floor checkout / cashier’s office area.  

In order for the devices to communicate with the cloud a 

Virtual Private Network was installed on top of a dedicated 

IOT Wi-Fi network. This was required as the public Wi-Fi 

network is targeted to visitors and only supports one-hour 

long sessions before disconnecting the visitor. A pair of a 

PM device [14] and a C2O2O device were mounted on the 

ceiling in each location covering both the open office space 

and the adjacent public visitor area. 

2. Device architecture 

C2O2O is a new device developed for the needs of the 

project that measures CO, CO2, humidity by integrating the 

CO B4 sensor, the NDIR A1-IRC sensor (measures both 

CO2 and temperature) and the RHI120A sensor, 

respectively. The range of CO2 is 0-5000ppm while for CO 

it is 0-1000ppm. Both sensors have a response time <30sec 

from 0 to 10ppm and very low noise (ppb equivalent). Both 

sensors are pre-calibrated and come with a certification as 

well as a calibration sheet. RHI120 measures humidity in 

the 10-90% range with +-3% computing board connected 

to a low power microprocessor which is in turn connected 

to a 16-bit ADC. A 24V-5V Step down DC-DC converter 

powers all components from a 24V DC power source. 

Sensor boards integrate supporting circuits for the sensors. 

Both the motherboard and the sensor are integrated in a 

single printed circuit board. The device also integrates 

real-time embedded software that continuously collects 

measurements and communicates them to the cloud. First, 

measurements are collected from the sensor at a once per 

second rate (1Hz). Next, they they are calibrated by 

applying the corrections provided in the calibration sheets 

and then they are aggregated in batches of 60 by applying 

an average function that gets rid of peaks. Last they are 

communicated to a timeseries database [12] in the cloud 

where they are visualized in dashboards and trigger the 

calculation of indices and alerts.  

3. Indices 

Five new indices providing estimates of air quality related 

risk were developed: a) risk of infection, b) ventilation 

efficiency, c) aggregated exposure d) AQI and e) 

congestion. In order to cater for the large volume, velocity 

and variability of the measurements, a data stream 

approach using the InfluxDB[11] query language was used 

to calculate four of the indices. Each raw timeseries, was 

converted to a real-time data stream using a 48-hour rolling 

window. Then the data were grouped by a desirable 

interval while a (running) aggregation function was 

applied to the group to create an aggregated data stream. 

Next, in many cases, mathematical conditions linking 

members of the aggregated data stream to thresholds were 

defined along with alerts that evaluate each condition 

every 1 minute. If a condition is breached the alert goes 

into a pending state. If the alert is pending for longer than 

5min it becomes a firing alert issuing visual (and email) 

notifications. No-data and error handling alerts were also 

defined. Congestion was estimated using a modeling 

technique based on Markov models as only estimates of 

the number of people present in the room during working 

hours was known. 

3.1. risk of infection 

Literature reports that whenever the PM10 daily average 

exceeded the 50ug/m3, the risk of infection from covid-19 

doubled [2]. Based on this, and as indoor air is between 2 

and 10 times worse than outdoor air and can get up to 100 

times worse, a data stream of PM daily average values for 

each monitored location was constructed over a 48h 

window: 

𝑆𝐸𝐿𝐸𝐶𝑇 𝑚𝑒𝑎𝑛 ("PM10") 𝐹𝑅𝑂𝑀 𝑃𝑀𝐷𝑎𝑡𝑎𝑆 𝑊𝐻𝐸𝑅𝐸 𝑡𝑖𝑚𝑒

> 𝑛𝑜𝑤 − 2𝑑 𝐺𝑅𝑂𝑈𝑃 𝐵𝑌 𝑡𝑖𝑚𝑒(24ℎ) 𝑂𝑅𝐷𝐸𝑅 𝐵𝑌 𝑡𝑖𝑚𝑒 𝑑𝑒𝑠𝑐;  

Query A: PM10 daily average  data stream in InfluxQL 

whenever the most recent value exceeded the 50ug/m3 

threshold a high risk of infection alert is triggered.  

𝑊𝐻𝐸𝑁 𝑙𝑎𝑠𝑡( ) 𝑂𝐹 𝑄𝑢𝑒𝑟𝑦 𝐴 𝐼𝑆 𝐴𝐵𝑂𝑉𝐸 50 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑒𝑣𝑒𝑟𝑦 1𝑚 𝑓𝑜𝑟 5𝑚 

Condition A: Conditions of alert rule using Query A in Grafana 

3.2. ventilation efficiency 

Literature reports that when CO2 concentration rises above 

600 ppm stronger ventilation is required to mitigate the risk 

of infection from airborne diseases such as tuberculosis 

[6]. In the scope of this work, two alert levels were defined. 

A “poor ventilation” alert is triggered whenever the most 

recent value of the CO2 one minute average timeseries is 

higher than 600 ppm while a “critical ventilation” alert is 

triggered when CO2 exceeds 800 ppm [7].  

𝑆𝐸𝐿𝐸𝐶𝑇 𝑚𝑒𝑎𝑛 ("𝐶𝑂2") 𝐹𝑅𝑂𝑀 𝐶𝑂2𝐷𝑎𝑡𝑎 𝑊𝐻𝐸𝑅𝐸 𝑡𝑖𝑚𝑒

> 𝑛𝑜𝑤 − 2𝑑 𝐺𝑅𝑂𝑈𝑃 𝐵𝑌 𝑡𝑖𝑚𝑒(1𝑚) 𝑂𝑅𝐷𝐸𝑅 𝐵𝑌 𝑡𝑖𝑚𝑒 𝑑𝑒𝑠𝑐;  

Query B: CO2 1min average data stream 

𝑊𝐻𝐸𝑁 𝑙𝑎𝑠𝑡( ) 𝑂𝐹 𝑄𝑢𝑒𝑟𝑦 𝐵 𝐼𝑆 𝐴𝐵𝑂𝑉𝐸 600 

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑒𝑣𝑒𝑟𝑦 1𝑚 𝑓𝑜𝑟 5𝑚 

Condition B: Conditions of alert rule using Query B 

3.3. Aggregated exposure to PM2.5  



Literature reports that whenever the 24h-aggregated 

exposure to ambient PM2.5 rises by 1% the covid-19 

infection risk doubles [1]. The raw PM2.5 measurements 

can be summarised at the monitoring intervals, and 

compared in real time with desired limits to calculate the 

actual exposure of workers (E) in the time period (T) from 

the relationship: 

𝛦 =
1

𝑇
 ∑ ∫ 𝐶𝑗𝑑𝑡𝑗

𝑗

0𝑗

 

Equation 1: Aggregated exposure 

where 𝐶𝑗 the time-varying concentration in the 

microenvironment and 𝑡𝑗 the time spent in that 

microenvironment. Because public building occupants 

rarely exceed 8-hour-long stays, 24h, 4h and 8h exposure 

was calculated in order to approximate more closely visitor 

and employee daily occupancy, respectively. The value of 

exposure is equal to the area under the curve of Equation 

1. A four-hour average of 1min averages of each pollutant 

was multiplied by 240 (the number of minutes in 4 hours) 

to approximate the 4h-exposure and similarly for the 8h 

and 24h ones. 

𝑆𝐸𝐿𝐸𝐶𝑇 240 ∗ 𝑚𝑒𝑎𝑛("PM1.0")  

𝑖𝑛𝑡𝑜 𝑜𝑛𝑒_min_𝑎𝑣𝑔_1𝑠𝑡_𝑓𝑙𝑜𝑜𝑟 𝐹𝑅𝑂𝑀 PMData  

𝑊𝐻𝐸𝑅𝐸 𝑡𝑖𝑚𝑒 < (𝑛𝑜𝑤 − 4ℎ) 𝐺𝑅𝑂𝑈𝑃 𝐵𝑌 𝑡𝑖𝑚𝑒(1𝑚) 

𝑜𝑟𝑑𝑒𝑟 𝑏𝑦 𝑡𝑖𝑚𝑒 𝑑𝑒𝑠𝑐; 

𝑆𝐸𝐿𝐸𝐶𝑇 𝑚𝑒𝑎𝑛("mean") 𝐹𝑅𝑂𝑀 one_min_avg_1st_floor 

𝑊𝐻𝐸𝑅𝐸 𝑡𝑖𝑚𝑒 < (𝑛𝑜𝑤 − 4ℎ) 𝐺𝑅𝑂𝑈𝑃 𝐵𝑌 𝑡𝑖𝑚𝑒(4ℎ) 

Queries C,D : 4H-exposure to PM1.0 at the 1st floor 

The results were visualised in Grafana with line charts. 

3.4. AQI 

Government stations usually report a moving average of 

pollution levels from the last 24 hours. The overall air 

quality index for a certain timeframe is then based on the 

worst air quality index rating for the individual pollutants. 

Similarly to above, 4hAQI variants were implemented for 

each pollutant based on moving averages summarized 

over 4h intervals. The results were visualised in Grafana 

with gauge charts. The following alert thresholds were set 

based either on legislation, AQI standards[13], guidelines 

[8] or on the distribution of observations:  

PM1.0, PM2.5: [0,12.5], (12.5, 25], (25, 50],>51. 

PM10: [0 to 50], (50, 150], (150, 250],>250. 

CO: [0, 5], (5,9],(9,15],(15,30], >30 

T(C): [0 to 26], (26, 30], (30, 35],>35. 

RH(%):[0 to 30], (30, 50], (50, 70], >70. 

3.5. Congestion 

To model CO2 fluctuations over time and associate them 

with human occupancy information, two Markov Models 

were developed that consist of three states - "equal," 

"plus," and "minus". The “plus” state is reached when the 

CO2 concentration is increased in two consecutive data 

points, the minus state is the opposite. For the definition of 

the “equal” state, first the datasets were pre-processed and 

summarized with respect to the variance [16] and average 

values. These were analyzed to determine possible CO2 

ranges in which, the change in occupancy would be 

considered insignificant. The first model represents a 3x3 

table of transition probabilities when the office is 

occupied, while the second model, when it is unoccupied. 

The models are trained using hourly sensor data extracted 

from the pilot dataset, in the range 8am to 3pm EET, each 

corresponding to either an occupied or unoccupied space. 

4. Results 

The following conclusions can be drawn from the 

monitoring so far (mid-April 2022 - today): 

Increased carbon dioxide concentration > 800 ppm during 

the public visiting hours in the 3rd floor. More specifically, 

the threshold of poor ventilation is exceeded 

instantaneously many times in the period from 8am to 2pm 

especially towards the end of the month, while at the 

beginning of the week it is also increased.This can be 

observed also from the microparticles and CO. 

Sharp changes in carbon monoxide between 2 - 4 ppm 

(significant indication of indoor smoking, although within 

limits). At the tills (3rd floor) spikes often coincide with the 

start and end of the shift, while at the 2nd floor they also 

occur at other times of the day, almost every two hours. 

Good pollution levels on the ground floor (an indication of 

good ventilation combined with the transient movement of 

visitors to other floors) 

Rather high levels of carbon monoxide (and carbon 

dioxide) and particulate matter at night on both floors (a 

significant indication of the presence of openings that 

allow outdoor pollutants to penetrate the building.) 

On public holidays concentrations are stable at very low 

levels. In August the concentrations are lower than in 

September. On weekends when there is no human presence 

both the 2nd and 3rd floor devices record the same picture.  

The daily cycle of all pollutant concentrations includes an 

increase during the night, a reduction during the day and a 

subsequent increase in the afternoon. 

Occupancy can be predicted with over 97% accuracy, from 

9am to 2pm, and with over 95% accuracy, from 8am to 

9am and from 2pm to 3pm. Furthermore, indicative graphs 

of the estimation error in, show that it is promising as an 

indicator of changes in occupancy, such as those that incur 

during arrival (between 8am and 9am) and departure from 

the workplace (between 2pm and 3pm) 

5. Conclusions 



The indices defined in this paper provide a good indication 

of both air quality and hygiene conditions in public 

buildings. However more attention is needed where 

thresholds are not defined by legislation. Furthermore, due 

to the real-time elements that are inherent in the monitoring 

process, our system can be used as a decision support 

system for predicting user presence with hourly 

granularity.

 

Figure 1.  Critical ventilation conditions at the Cashier area during visiting hours 
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