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Abstract In this study, we investigate the contribution of
several uncertainty drivers towards the total uncertainty of
a 2D flood model, in a benchmark case study under steady
flow conditions. The simulator used for the analysis is the
in-house FLOW-R2D software, whilst the benchmark case
study consists of a compound trapezoidal channel, which
represents the main channel and the floodplains. Unlike the
conventional taxonomy of the uncertainty sources (input
data, parametric and structural), we define five drivers:
a) the forcing driver which consists of the inflow to the
computational domain; b) the geometric driver which
depends on the topography of the case study; c) the
physical driver which incorporates all the parameters
required to describe a physical process (such as friction);
d) the computational driver which includes the parameters
needed for computational reasons (e.g. space step); e) the
structural driver which is metric for the weakness of the
numerical model to capture an idealized analytical solution
or observed data, due to the abstraction from reality. For
the quantification of each driver contribution, we present
the Uncertainty Index, which is based on the stochastic
Monte Carlo technique.
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1. Introduction

Typically, uncertainty sources of numerical models are
classified in three groups: a) input data; b) parametric; c)
structural. However, there is no clear distinction between
all these sources for hydrodynamic models used for flood
modelling.

For example, the friction coefficients: if they are drawn
from hydraulic handbooks they are considered as input
data, but if their grey-box nature is taken into account and
they are calibrated, their uncertainty can be considered as
parametric.

One more indicative example is the space step used in the
simulations. It could be categorized as input data, since the
bathymetry of the surface elevation is entered by the user.
On the other hand, it could also be categorized as a
parameter, from the point of view of a modeler. Finally, its
uncertainty could be characterized as structural
uncertainty, since the numerical errors added to the results

derived by the numerical solution depend on the space step
size, and hence, to the grid size selected for the simulation.

Therefore, we propose a modified taxonomy, defining five
drivers of uncertainty: a) forcing driver; b) geometric
driver; c) physical driver; d) computational driver; and
e) structural driver.

The forcing driver consists of the inflow to the
computational domain, namely the constant discharge for
steady flows or the parameters related to the flood
hydrograph for unsteady flows. The geometric driver is the
topography of the computational domain. The physical
driver consists of the required parameters by the simulator
in order to describe a physical process, such as friction or
infiltration. The computational driver consists of the
parameters required by the simulator for computational
reasons, such as the space or time step. Finally, the
structural driver are the residuals between observed data or
analytical solutions (if they exist) and the corresponding
numerical results, due to the fact that a numerical model is
an abstract from reality.

2.  Material and methods
2.1. Benchmark case study

In order to perform our analysis, we create a synthetic
computational domain with a size of 1000 x 2000 m,
which has the form depicted in Figure 1. One of the
advantages of this topography is the analogy between this
benchmark and a real-world case study, namely the main
channel and the floodplains. Besides, in this benchmark we
can derive an analytical solution for the water depths,
based on Manning equation. Therefore, the structural
driver can be estimated.

2.1. FLOW-R2D software

FLOW-R2D software (Tsakiris and Bellos, 2014) is a
numerical solver of the full form of 2D Shallow Water
Equations, based on Finite Difference Method and
McCormack numerical scheme. It has been used in several
case studies, including urban environments and pluvial
flooding (Bellos et al., 2020a).
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3. Uncertainty analysis
3.1. Total uncertainty

For the quantification of uncertainty, Monte Carlo
methodology is used (Dimitriadis et al., 2016; Tscheikner-
Gratl et al., 2019). Due to the computational burden, a
preliminary Morris-based sensitivity analysis is performed
in order to select the most influential components, in
respect with the metric selected, namely the water depths
along the main channel and the floodplains (Table 1).

Table 1. Components used for the total uncertainty
quantification

Component Range  Units Driver
Discharge 100-900 md/s Forcing
Main channel 0.2-2 % Geometric
slope
Main channel 100-300 m Geometric
width
Bank height 0.5-15 m Geometric
Manning friction  0.02-0.1 s/m%?® Physical
coefficient in the
main channel
Manning friction  0.05-0.2 s/m%?® Physical
coefficient in the
floodplains
Upstream 0.3-0.7 - Computational
boundary
condition
parameter

The rest of the components which have minor impact on
the selected metrics are: a)space step (5-25m);
b) floodplains slope (0.5-2 %); c) diffusion factor used for
numerical stability (0.90-0.92).

For the total uncertainty quantification, 2000 simulations
were implemented drawing values from the ranges of
Table 1. The sampling is performed assuming uniform
distribution (Latin Hypercube Sampling). For the rest 3
components, we selected the average values in between the
above ranges. The uncertainty bands of the water depth
profiles for both main channel and floodplains are depicted
at Figure 2. Figure 2 also shows the empirical distribution
of the water depths and the fitting performed using the
Weibull distribution, in indicative positions.

3.1. Uncertainty drivers

For the uncertainty quantification of each driver, 500
simulations were implemented for each driver, drawing
values from the pre-specified ranges. For each set of runs,
the rest of the variables are taken equal to the average of
their range. For the computational driver, space step is also
included in the analysis.

For the structural driver, the dataset derived for defining
the total uncertainty is used. The statistical analysis is
performed with the residuals |hmodei- hanaiyticall, Where hmogel
is the water depth derived by the model and hanaiyicar is the
water depth calculated using Manning's equation.

The Uncertainty Index (Ul) for each driver or a group of
components can be calculated as the ratio of the variance
of the driver divided by the variance of the total
uncertainty.

Ul = var(driver) (1)

- var(total)

The Ul for each driver, across the main channel and the
floodplains, for both empirical and Weibull distributions
are depicted in Figures 4 and 5.

3. Discussion and concluding remarks

The findings can be summarized in the following points:

e A skewness is observed in the empirical
distribution for both main channel and floodplain
water depth. Therefore, a fitting distribution such
as Weibull seems to be a proper choice and it is
according to the bibliography (Bellos et al.
2020b).

e  For the main channel, the most crucial drivers are
the geometric and the forcing drivers, following
the physical driver. Computational and structural
drivers seem to have negligible impact, except the
areas near the upstream and downstream
boundaries.

o Forthe floodplains, the picture is the same, except
from the structural driver, which has more impact
than the corresponding impact observed in the
main channel.

e Since the geometric parameters cover a wide
range of topographies and taking into account that
for a specific area the terrain model uncertainties
are much smaller, forcing driver seems to be the
more crucial factor, regarding the uncertainty
observed to the water depths.

e The physical driver is also important, since these
parameters are also  characterized by
uncertainties, especially in the case there are no
observed data, and therefore, they cannot be
calibrated.

e The structural driver seems to have impact in
floodplains. A further investigation is required in
order to identify if is solver's issue or is a global
conclusion.
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Figure 1. Benchmark case study

CEST2021_00521



3 T T

+90% Confidence Interval 500
I £75% Confidence Interval w
—-©-Mean )]
25} : o

0

500 -

TR
[a)
o

0

0 1 2 3 4
h (m)
y=1960 m
500 : ‘

R
[a)
o

0

0 ! ! ! 0.5 1 1.5 2
0 500 1000 1500 2000 h (m)

y (m)

Figure 2. Uncertainty band for several confidence intervals of water depths along the main channel (left); empirical and
Weibull distributions of water depths in three indicative positions along the main channel (right)
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Figure 3. Uncertainty band for several confidence intervals of water depths along the floodplains (left); empirical and
Weibull distributions of water depths in three indicative positions along the main channel (right)
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Figure 4. Uncertainty Index derived by empirical (left) and Weibull distributions (right) along the main channel
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Figure 5. Uncertainty Index derived by empirical (left) and Weibull distributions (right) along the floodplains
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