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Abstract The present work leverages simulated 

hydrometeorological factors and satellite-derived 
chlorophyll-a to predict phytoplankton dynamics for 
Mulargia reservoir (Sardinia, Italy). A Random Forest 

(RF) model was (a) calibrated to minimize out-of-bag 
errors of chlorophyll-a predictions for a 5-year-long 

period (2015-2019), and (b) benchmarked against a naïve 
predicting alternative for multiple forecasting horizons. 
Calibration and benchmarking revealed that the RF 

model can predict the temporal dynamics of 
phytoplankton growth accurately up to ten days in 
advance (mean absolute scaled errors ranged from 0.5 to 

0.9). Permutation variable importance metrics and the 
individual conditional expectation plots revealed that 

moderate temperatures, high soluble phosphorus loads, 
and low light intensities favor the occurrence of 
phytoplankton growth in Mulargia. This finding is 

consistent with the dominance of Planktothrix sp. that 
has been observed in the reservoir. Conclusively, this 
work lays the foundation for an operational forecast 

model to help local stakeholders with the present and 
future reservoir management. 
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1. Introduction 
Eutrophication is a threat for the ecological state of lakes 
and reservoirs worldwide. During the last decades, 
eutrophication has evolved into a significant 

socioeconomical problem with implications that go 
beyond its apparent ecological aspects. The management 
solutions needed to control eutrophication and its 

impacts are largely supported by scientific results, many 

of which derive from modelling approaches. 

These modeling approaches are generally classified in 
two classes: empirical (or data-driven) models and 
mechanistic models (or process-based models) (Vinçon-

Leite and Casenave, 2019). Both encompass their own 
challenges and advantages when used in real-world 

decision-making processes. 

On one hand, mechanistic models can replicate the 
physical processes involved in eutrophication and, 

thereby, (a) corroborate or complement monitoring 

findings, and (b) explore “what if” questions, 

illuminating specific aspects of eutrophication that could 
not be otherwise observed. Nonetheless, a meta-analysis, 
which evaluated the performance of 124 mechanistic 

models, underscored their difficulties in accurately 
reproducing phytoplankton dynamics (Shimoda and 

Arhonditsis, 2016). These difficulties may be, at least 
partially, attributed to the complex interactions and 
nonlinear mechanisms that regulate the phytoplankton 

dynamics, which are modeled via mathematical models 
based on a priori assumptions. Consequently, model-
based outcomes become highly uncertain (Gal et al., 

2014) and, therefore, questions concerning their 
application in decision making have been raised 

(Fornarelli et al., 2013). 

On the other hand, data-driven models are simpler in 
nature, as they require little a priori knowledge about the 

ecosystem processes. Data-driven models have been 
proven as potent tools for short-term (day to weeks) 
forecasting (Vinçon-Leite and Casenave, 2019; Cruz et 

al., 2021), when sufficient data are available. Data 
availability is a  key component for the development of 

reliable empirical models. In many cases the lack of 

sufficient data becomes a major obstacle. 

This obstacle motivated the present work which 

leverages simulated hydrometeorological data and 
satellite-derived water quality observations to develop a 
data-driven approach – a  random forest algorithm – for 

the short-term forecasting of eutrophication dynamics in 

lakes and reservoirs. 

As already mentioned, data-driven approaches have been 
used in ecological modelling during the last years and, 
therefore, the aim of the present effort goes beyond the 

development of a data-driven model. The aim of this 
work is three-fold. First, this work aims to test the 
suitability of relevant data sets that are readily available 

at a  global scale: the development of global 
hydrometeorological models and the existence of 

satellite-derived information pose a unique opportunity 
for data-oriented solutions, even in data-scarce water 
bodies. Second, this effort aspires to evaluate the limits 

of forecasting capacities using data-driven models 
compared to a naïve predicting alternative. Third, the 
present work aspires to test possible windows into the 
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model’s internals to enhance the interpretability of the 
typically black-box empirical models. All the above, will 

be tested in Mulargia reservoir located in South Sardinia, 

Italy. 

2. Methods 

2.1 Study area 

Mulargia is a large and deep reservoir located in Sardinia 

(Italy). The reservoir covers an area of 12.5 km2, has a 

maximum depth of approximately 99 m and a maximum 

volume of about 347 hm3. It serves as a drinking water 

source for a population of 700,000 inhabitants. Mulargia 

has a trophic level varying between oligotrophy and 

mesotrophy (Sulis et al., 2014). Following 2000, the 

reservoir is clearly dominated by cyanobacteria with the 

highest occurrence being that of the Planktothrix 

agardhii-rubescens group (e.g. cyanobacteria presented 

a peak density in 2002 with a dominance of 99%) 

(Mariani et al., 2015). Another species of cyanobacteria 

contributing significantly to the density of the entire class 

is Microcystis sp., with an important bloom in 2001 

recording a dominance of 80% (Mariani et al., 2015). 

2.2 Datasets 
A 5-year-long (2015-2019) record of data has been 

collected for the training of the random forest (RF) 

algorithm. 

The predictors of the model comprise simulated 

hydrological and meteorological forcings from 
continental and global scale models. On one hand, 

hydrological forcings of the model comprise water 
inflows, water temperature, and nutrient (total nitrogen 
and total phosphorus) loadings, as predicted on daily 

time-step by a re-calibrated version of the E-HYPE 
model (Pechlivanidis and Crochemore, 2018). On the 
other hand, meteorological external forcings of the 

model comprise gridded data of wind, air temperature, 
precipitation, and solar radiation on an hourly time step 

from the ERA5-Land reanalysis dataset (Muñoz Sabater, 

2019). 

The target values of the model, i.e. chlorophyll-a 

concentrations, have been estimated from imagery 

acquired from multispectral optical sensors onboard of 

the polar orbiting satellites Landsat 8 and Sentinel-2. For 

the period 2015–2019, 195 cloud-free satellite images 

have been processed to obtain maps of chlorophyll-a 

concentration. The physical methods for the retrieval of 

water constituents from Sentinel-2 and Landsat 8 are 

described elsewhere (Heege and Fischer, 2004; Heege et 

al., 2014). Ultimately, multispectral chlorophyll-a 

products were validated for the study area, as described 

by Bresciani et al. (2019). 

For the utilization of the model in a forecasting mode, 

historical, short-to-medium term forecasts of the 

hydrometeorological data have been collected for the 

years 2017-2018 from the same data sources employed 

for the training of the algorithm. 

 

2.3 Data preparation 
Gridded data comprising (a) meteorological variables, 
and (b) satellite-derived chlorophyll-a concentrations 

were initially formulated as time-series data with a daily 
time step corresponding to a specific point of interest 
within the reservoir, i.e., the water abstraction area of the 

reservoir. Hydrological data were already available as 

time series with a daily time step (see also Section 2.2). 

An integral step of the prediction strategy and, therefore, 

of the data preparation phase involved the application of 
a lag and a sliding window method. To provide an 

example of how data are formulated in the prediction 
strategy, for the day-ahead prediction with a ten-day 
sliding window, (a) a one-day lag was applied to the 

target values (the time series of chlorophyll-a 
concentrations), and (b) the predictor matrix contained 
statistical indices of the hydrometeorological inputs of 

the last ten days (i.e., the width of the moving window). 
These statistical indices were: (a) the mean and 

maximum inflows from the upstream catchment area, (b) 
the mean water temperature of the inflows from the 
upstream catchment area, (c) the mean mass of inorganic 

and organic nitrogen entering the reservoir from the 
upstream catchment area, (d) the mean mass of soluble 
and particulate phosphorus entering the reservoir from 

the upstream catchment area, (e) mean and maximum 
eastward and northward components of the wind, (f) the 

mean, maximum and minimum air temperature, (h) the 
cumulative solar radiation, and (i) the cumulative 

precipitation. 

Due to their sparser temporal resolution, satellite-derived 
time-series contained missing data. A listwise deletion 
strategy was adopted to handle missing data. In this 

regard, cases with missing data were simply omitted and 
the remaining data were analyzed. Listwise deletion was 

a reasonable strategy, as it is knowingly producing 
unbiased estimates and conservative results, since (a) a 
large enough sample of data remained, and (b) the 

assumption of random missingness was satisfied. 

2.4 Ensemble learning algorithm 

The RF algorithm is an ensemble learning approach that 

relies on the bootstrap aggregation (bagging) of 

regression trees with some additional degree of 

randomization. Bagging of regression trees alleviates 

their instability, while randomization reduces the 

correlation among them and, consequently, reduces the 

variance of the predictions (i.e., the average of the trees). 

Randomization is conducted by randomly selecting a 

subset of predictor variables as candidates for splitting. 

Prediction is performed by averaging the predictions of 

each tree. Tyralis et al. (2019) offer a comprehensive 

review on the formulation of RF in water resources 

applications. 

Four hyperparameters of the RF algorithm, i.e., the 
minimum leaf size of each tree, the number of splits, the 

number of trees, and the number of predictor variables to 
sample, were fine-tuned using a Bayesian optimization 

method to minimize out-of-bag errors of chlorophyll-a 
predictions in Mulargia reservoir. Out-of-bag errors 
correspond to the samples (about 1/3 of the training set) 
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that remain after bootstrapping the training set. In 
addition to the RF parameters, the optimum width of the 

sliding window for the prediction strategy was 
investigated. Windows varying from one to ten days 

were tested. 

As mentioned in the Introduction, this work searches for 
windows into the model’s internals to enhance its 
otherwise limited interpretability. These windows are 

two-fold: (a) a permutation variable importance metric 
(VIM), and (b) a model-agnostic visualization tool, i.e., 

the individual conditional expectation (ICE) plot. On one 
hand, a permutation VIM measures the mean decrease in 
accuracy in the out-of-bag sample by randomly 

permuting the predictor variable of interest. If a predictor 
is influential in prediction, then permuting its values 
should drop model accuracy and high VIM values should 

be anticipated. On the contrary, if a  predictor is not 
influential, then permuting its values should have little to 

no effect on the model error and VIMs will be randomly 
distributed around zero. On the other hand, ICE plots 
expand and refine the classical partial dependence plots 

(PDP) by graphing the functional relationship between 
the predicted response and the feature for individual 
observations. ICE plots highlight the variation in the 

fitted values across the range of a covariate, suggesting 

where and to what extent heterogeneities might exist. 

2.5 Benchmarking 
To evaluate the predictive power of the RF algorithm, 
predictions from the RF algorithm were benchmarked 
against a naïve method, i.e., the last observation method. 

The metric used for the comparison was the mean 
absolute scaled error (MASE), which is the mean 
absolute error of the forecast values, divided by the mean 

absolute error of the in-sample one-step naive forecast 
(Hydnman, 2006). The MASE was estimated for 

increasing forecasting horizons (i.e., moving from day-
ahead to ten-day-ahead predictions) for the years 2017-
2018. For these two years, the model employed expired 

real-time forecasted hydrometeorological data rather 
than the re-analysis and historical simulated datasets that 

it has been trained on. 

3. Results and discussion 

3.1. Algorithm development and performance 
The Bayesian optimization algorithm reached a solution 
within 67 iterations with an out-of-bag error equal to 4.1 

μg chlorophyll-a/l. A 10-day sliding window for both 
forcing data types (hydrological and meteorological) was 
optimal; in other words, the hydrometeorological data for 

the last 10 days are required for predicting day-ahead 
chlorophyll-a values. Regarding the formulation of the 
RF algorithm, the optimal solution of the optimization 

problem corresponded to a minimum leaf size of 5, 13 

variables to sample, 14 splits and 329 regression trees. 

Figure 1 demonstrates the output of the parameter fine-
tuning effort and compares the day-ahead predictions of 
the model with the satellite-derived observations of 

chlorophyll-a for the training part of the dataset. The 
model managed to capture accurately the temporal 
dynamics of phytoplankton growth, achieving a mean 

absolute error of 2.8 μg/l. The model predicted accurately 

the timing of chlorophyll-a spikes, but slightly 

underpredicted their intensity. 

 
Figure 1. Observed versus simulated values for the RF 

model for the training data (2015-2019). 

 
When tested in a forecasted rationale and for larger 
forecasting horizons, the accuracy of the model gradually 
deteriorated, but remained superior to its naïve 

alternative until a  ten-day-ahead forecasting horizon, as 
shown in Figure 2; MASE remained lower than one for 

all forecasting horizons. 

 
Figure 2. MASE for the RF model as a function of the 

forecasting horizon for the years 2017-2018. 

3.2. Predictor importance assessment 

Results based on the permutation VIM adopted herein, 

revealed that air temperature, cumulative radiation, and 

total soluble phosphorus mass entering the reservoir were 

the most influential predictors, followed by the 

temperature of inflows (see Figure 3). On the contrary, 

predictors related with wind, the total precipitation or the 

nitrogen-related loads could be excluded from the 

predictor list, as they exhibited VIMs close to zero. To 

further get an inkling on the relevance of the most 

influential parameters, their individual expectation plots 

indicated that moderate temperatures (Figure 4a and b), 

high soluble phosphorus loads (Figure 4c) and low light 

intensity (Figure 4d) are favoring chlorophyll-a 

production in Mulargia. This finding is consistent with 

the dominance of Planktothrix sp. that has been observed 

in the reservoir. 
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Figure 3. Predictor importance estimates for the RF 

algorithm. 

 
Figure 4. ICE plots for (a) maximum air temperature, (b) 

minimum air temperature, (c) mean soluble phosphorus 

load, (d) cumulative radiation. The red line shows the 

PDP; the gray lines and blue points are derived from the 

ICE analyses. 

4. Conclusions 
This work developed and evaluated the predictive 

abilities of an RF algorithm that employs simulated 
hydrometeorological drivers to predict previously 
validated satellite-derived chlorophyll-a concentrations. 

Results indicate that the RF algorithm adopted herein 
could capture the dynamics of phytoplankton growth 

adequately. When benchmarked with a naïve forecasting 
alternative, the RF provided accurate forecasts for up to 

ten days in advance. 

Besides model evaluation, two complementary ways to 
gain insight in the model’s internals were used to 
augment the understanding of what drives phytoplankton 

growth in the reservoir. Using the VIM and ICE plots, 
moderate temperatures, high soluble phosphorus 

concentrations, and low light intensity were found to 

favor phytoplankton growth. 

Perhaps more importantly, this work lays the foundation 

for an operational forecast model to help local 
stakeholders with the present and future reservoir 
management. The type of data allows to use the same 

approach to other inland water bodies regardless of the 
availability of regional in-situ data. In what follows this 

part of the work, the application of this methodology in 
diverse water bodies will be performed to confirm its 

generalization potential. 
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