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Abstract: The main purpose of this study is to model the 

operation of a Drinking Water Treatment Plant (DWTP) 

using its main operational and water quality parameters in 

a fast, easy and reliable way. This study is based on a large 

number of data from recent years (2019-2021). The DWTP 

has a maximum capacity of 110,600 m3/day and is located 

at Hersonissos, Crete in Greece. The methodology that was 

followed comprised of the development of Artificial 

Neural Networks (ANN) in the MATLAB programming 

environment. Since the 1990s the ANN modelling 

approach has gained popularity for prediction and 

forecasting due to its ability to capture complex nonlinear 

relationships. Two models were developed with 

satisfactory results with regards to Mean-Square Error 

(MSE) and Regression Coefficient (R) values. The models 

were able to predict the main operational parameters such 

as the dosages of coagulants, flocculants and disinfection 

(O3, Cl2(g)) chemicals rendering them a useful tool for the 

DWTP operator. For future work a greater number of tests 

are planned to check different ANN input parameters and 

architectures with different numbers of hidden neurons. 
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1. Introduction 

A reliable forecasting model for each DWTP based on 

operational parameters is useful for controlling the plant's 

operation. Water characteristics such as temperature, 

turbidity and pH are important water quality parameters 

and there is a significant relationship between these 

parameters and the amounts of coagulants and flocculants 

used in water treatment processes in a Water Treatment 

Plant (WTP) (Maleki Α. et al., 2018). 

Artificial Intelligence and Machine Learning tools show 

high performance in fitting complex relationships and 

prediction in DWTP. These methods are capable of 

processing data with nonlinear relationships that are 

difficult to fit with a single mathematical model (Li L. et 

al., 2021). ANNs are computational techniques that mimic 

some operational features of the human brain. ANNs are 

not programmed like conventional computer programs, but 

they have mechanisms which can learn certain data or 

patterns. Data in ANNs are connected to each other by 

weights parallel to synapses. Training of the ANN is done 

by adjusting these connections through a learning 

algorithm. ANN modelling usually consists of the 

following steps: data collection, data analysis and training 

of the neural network. ANNs can identify intricate 

nonlinear relationships between input and output data sets. 

There are various types of artificial neural network 

available, but the most commonly used are: Multi-layer 

Perceptrons (MLPs), Radial Basis Function (RBF), 

General Regression Neural Network (GRNN), Cascade 

Forward Networks (CFN) and Kohonen’s self-organizing 

maps (SOM) (O’Reilly G et al. 2018). 

A neural network derives its computing power through, 

first, its massively parallel distributed structure and, 

second, its ability to learn and therefore generalize. 

Generalization refers to the neural network’s production of 

reasonable outputs for inputs not encountered during 

training (learning). These two information processing 

capabilities make it possible for neural networks to find 

good approximate solutions to complex (large-scale) 

problems that are intractable (Haykin S. 2009). 

Advantages that ANNs bring to water quality modelling 

include: (i) model building does not require a physics-

based algorithm and this makes the modelling approach 

faster and more flexible; (ii) non-linear relationships can 

be handled properly and without any effort; and (iii) user 

experiences and knowledge can be incorporated in 

construction of a model (Tabari H. & Talaee P.H., 2015). 

Aposelemis DWTP treats the surface water of the dam 

reservoir Aposelemis, which capacity is 25.3 x 106 m3 

water. Aposelemis DWTP is a conventional treatment 

facility consisting of pre- disinfection by ozone (in situ O3 

production), alum coagulation, flocculation, sand filtration 

and disinfection by chlorine gas (Cl2(g)) (Fig. 1). Its daily 

production capacity is approximately 110,600,000 liters. 

Although it consistently produces excellent quality 

drinking water, plant process control could be improved 
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and the prediction of the main operational parameters 

would be a useful tool. Thus, the project was initiated to 

investigate ANN process control for the total operation of 

the Aposelemis WTP. 

 

 

Figure 1. Aposelemis WTP flowchart 

 

The main statistics for the studied parameters of 

Aposelemis DWTP are given in Table 1. 

 

Table 1. Variables statistical properties 

No Variable Unit MIN MAX AVERAGE STDEV 

01 ΔΗ m -1.91 4.46 0.00 0.26 

02 Q m3/d 4,271.00 65,545.00 36,566.41 9,698.51 

03 T1 NTU 0.07 27.00 3.56 3.36 

04 pH1  6.57 8.38 7.53 0.36 

05 T2 NTU 0.01 0.71 0.15 0.07 

06 pH2  6.42 7.98 7.31 0.30 

07 Cl2 mg/L 0.02 0.90 0.43 0.12 

08 Al μg/L 8.00 146.00 41.93 22.13 

09 Electricity kWh/d 1,060.40 19,512.80 8,445.80 2,084.76 

10 O3 mg/L 0.00 0.20 0.05 0.02 

11 AN PE mg/L 0.20 0.80 0.39 0.17 

12 PACl mg/L 7.00 80.00 20.22 13.07 

13 Cl2(g) kg/h 0.70 3.00 1.99 0.43 

ΔΗ: Daily difference in water height in reservoir, Q: Raw water supply, T1: Raw 

water turbidity, pH1: Raw water pH, T2: Treated clear water turbidity, pH2: Treated 

clear water pH, Cl2: Treated clear water residual chlorine, Al: Treated clear water 

concentration of Aluminium, Electricity: Daily consumption of WTP electricity, O3: 

Residual O3 after ozonation process, AN PE: Anionic polyelectrolyte, PACl: Poly 

aluminium chloride, Cl2(g): Chlorine gas supply 

The coagulation involves many complex physical and 

chemical mechanisms, which are difficult to model using 

traditional methods. The objective of this study is to select 

the drinking water treatment processes, collect real 

operational data, build and test the ANN predicting model, 

including the coagulation, flocculation, sedimentation, 

filtration, and disinfection process. The neural approach 

requires very short computational times and it may depict 

some nonlinear relationships between system inputs and 

outputs (Wu G.-D., Lo S.-L., 2010). 

 

2. Methodology and equipment 

2.1. Data collection and analysis 

The ANN model was developed for assisting treatment 

plant operators to determine real time coagulant dosage for 

drinking water treatment, with the water purification 

capacity of 110,600.00 m3/day. Τhe DWTP operates at 1/3 

of its maximum capacity. The coagulant of drinking water 

treatment used in this study is poly aluminium chloride 

(PACl). 

In order to obtain the input and target data required to 

develop and validate ANN model, water samples were 

analyzed at Aposelemis Water Quality Control Laboratory 

and operational data per five minutes for two years long 

(708 values for each of 13 parameters, total: 9 204.00 

values) were collected from Aposelemis’ WTP 

Supervisory Control and Data Acquisition (SCADA). 

The evolution of the different main describers (raw water 

turbidity and pH) of the raw water quality with time is 

shown in Fig. 2. 

 

 

Figure 2. Raw water characteristics: (a) raw water 

turbidity and (b) raw water pH 

In order to use the data to the ANN model, data 

normalization was necessary. Specifically, the input data 

of the ANN were scaled linearly between 0.0–1.0 by using 

the equation: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐷𝑎𝑡𝑎 =
𝐿 − 𝑀𝑖𝑛

𝑀𝑎𝑥 − 𝑀𝑖𝑛
 

Where L is the raw value, Max is the maximum of raw 

value, and Min is the minimum of raw value. 

The model inputs consist of operational parameters and 

raw and treated water quality variables and whereas the 

model targets are the optimal residual ozone, alum, anionic 

polyelectrolyte and gas chlorine dosage needed to achieve 

the desired treated water quality. 

2.2. ANN approach 
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The ANN model was developed by using the Neural 

Fitting Tool (nftool) of MATLAB R2019a with random 

division of the 708 values per variable. The selected 

percentage division of training, validation and testing data 

was: 70%, 15% and 15% respectively. The 708 individual 

values per variable were used to design the ANN model for 

the prediction of the main operational parameters. 496 

individual values per variable were used in training 

subsets, and 106 in validation and testing subsets, 

respectively. The training samples were presented to the 

network during training and the network are adjusted 

according to their error. Validation samples are used to 

measure network generalization and to stop training when 

generalization converges under certain criteria. Testing 

samples have no effects on training and so provide an 

independent measure of network performance during and 

after training. 

The chosen training algorithm was the Levenberg- 

Marquardt Algorithm. This algorithm typically requires 

more memory but less time. Training automatically stops 

when generalization stops improving, as indicated by an 

increase in the mean square error of the validation samples. 

The selected number of Hidden Neurons, which 

determines the complexity of a problem the network can 

solve, was 100. 

 

3. Results 

Τhe ΑΝΝ model constructed with 9 Inputs (variables No 

01-09 in Table 1) and 4 Targets (variables No 10-13 in 

Table 1) is reflected in Figure 3 and its results in Figure 4. 

 

Figure 3. ANN constructed model 

 

 

Figure 4. Results of ANN constructed model 

 

Mean Squared Error (MSE) denotes the average squared 

difference between output and target values. The lower the 

MSE the better the performance. Zero means no error. 

Correlation (R) Coefficient measures the correlation 

between output and target values. An R value of 1 means 

a close relationship, 0 a random relationship. 

Τhe constructed ΑΝΝ model performed well in predicting 

the studied main operational parameters. MSE is relatively 

low for all stages (Fig. 5): training, validation, testing 

(8.06x10-3, 1.18x10-2 and 1.99x10-2, respectively). 

Regression values (Fig.6) approached 1 (Rall=0.91059) 

with the potential to improve. Error distribution is around 

zero and is close to normal, which indicated that there are 

no systematic errors in the model. Noteworthy is also the 

fact that the errors of validation and testing follow the same 

distribution as the training ones, which indicates that the 

model does not suffer from overtraining. 

 

Figure 5. Error Histogram 

 

 

Figure 6. Correlation results 

 

Curious to find what the absolute minimum set of 

necessary parameters is for an adequate simulation of the 

process, an attempt was made to simplify the ANN model 

by using a smaller number of Input parameters (5 Inputs: 

No 02, 03, 05, 07,08 in Table 1). This approach, as 

expected, yielded inferior results (shown in the Figures 7, 

8 and 9), but also necessitated less input data was slightly 

faster. 
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Figure 7. Results of ANN constructed simplified model 

 

 

Figure 8. Error Histogram simplified model 

 

 

Figure 9. Regression Diagram simplified model 

 

The MSE is relatively low for all stages of the original 

developed ANN model: training, validation, testing as well 

as for the ANN simplified model. Nevertheless, the MSE 

and the Correlation coefficients (R) are lower in the 

originally designed ΑΝΝ model compared to the 

simplified one. Error distribution is around zero and no 

outliers occurred, both in the originally designed ΑΝΝ 

model and in the simplified model. Τhe MSE of the testing 

stage is the most important because it considers 

independent values that have not been taken into account 

during the training or validation stages. In the case of 

simplified model, the testing error increased by 49% 

compared to the original one, so a decision is necessary on 

the desired accuracy of the model, before a choice can be 

made between the two approaches. In the simplified 

approach, an outlier simulated value appeared in the 

validation set, which also indicates that the model did not 

perform as well as the original and could have started 

overtraining. 

 

4. Conclusions 

In a WTP, when the input data are normalized, the 

prediction of the main operational parameters can be 

attained by an ANN model in a very fast, easy and 

relatively reliable way. 

ΑΝΝ models can be very helpful for the WTP operators to 

predict the main operational parameters, i.e. coagulants 

and flocculants dosages, as well as disinfection chemicals 

dosages (ozone, chlorine). Τhe greater the number of input 

variables in the studied ΑΝΝs model, the better the results 

were with regarding MSE and R. In any case, the error 

distribution is around zero and close to normal without 

extreme values for the studied ANN models. Τhe 

constructed ΑΝΝs model performed well in predicting the 

studied main operational parameters. 

Future work will be focused on greater number of tests for 

different input parameters and with a different number of 

hidden neurons. 
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