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Abstract Water resource management is one the most 

urgent aspects of environmental protection and 

sustainability policies world-wide. Accurate, real-time 

remote sensing of the status of underground reservoirs is 

required for proper regional planning, prevention of 

droughts, optimized farming etc. ‘Water Underground’ is 

a low-cost solution, based on a combination of Internet of 

Things (IoT) local sensing, Edge computing, Cloud 

storage, web services and Machine Learning (ML) and 

predictive analytics, continuously monitoring the level of 

underground water and its quality. Specifically, water level 

is monitored via an IoT apparatus providing the Static 

(SWL) and Pumping Water Level (PWL). Moreover, the 

quality of water is tracked via measuring the Total 

Dissolved Solids (TDS), Oxidation-Reduction Potential 

(ORP), temperature, pH, electrical-conductivity, etc. Local 

processing in the IoT device includes measurements’ 

transformations and robust adaptive control for the 

device’s actuators. The reservoir dynamics is tracked and 

modeled using Cloud-based predictive analytics. The 

corresponding Cloud services include long- and short-term 

detection of periodic trends, Drawdown (DD) patterns, 

prediction of SWL, predictive maintenance via PWL 

tracking, etc. The overall solution has received 

international recognition in IBM Challenge 2020 as top-7 

finalist for Europe. The platform is currently under 

prototype deployment in several sites in the Attica region 

of Greece. 
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1. Introduction 

Water resources monitoring and management is a very 

important aspect of environmental and sustainability 

factors of developmental strategies, especially in urban and 

suburban regions of high population density, as well as in 

contexts of spatial (geographic) or temporal (seasonal) 

scarcity of water. Close monitoring and continuous 

assessment of water sources and reservoirs is imperative 

for the policy-makers to employ proper public safety and 

health protection strategies. 

The ‘Water Underground’ system is a holistic, low-cost, 

IoT- and ML-enabled solution for sensing, analyzing and 

monitoring localized water resources, typically wells or 

reservoirs, which require careful management and long-

term sustainability. It combines the currently available 

low-cost single-board computers (SBC) and modular 

sensors with networking and Cloud services, in order to 

provide both on-site Edge computing capabilities together 

with computationally-heavy back-end processing and 

storage in the Cloud. The system monitoring includes a 

user-friendly web-based interface that provides 

dashboards for tabular and graphical presentation of all the 

relevant data, status reports and predictions. 

In the following sections, the three main components of the 

Water Underground deployment are described in more 

detail, namely: 

• Sensing I/O, IoT, Edge computing 

• Back-end processing, ML/analytics, predictions 

• Frond-end application, user interface 

 

2. Methodology 

2.1. Data preprocessing 

The raw measurements of the water level are usually very 

noisy and may contain range errors or missing values. The 

first part of the data processing includes detection and 

correction of such errors by proper methods. Noise and 

isolated errors are averaged against neighboring values in 

the time series; missing values are also averaged if 

isolated, or estimated via localized linear regression in case 

of missing blocks. The system pre-processing is designed 

to be minimally intrusive and all other aspects are 

addressed in the subsequent steps by other means, e.g., 

Kalman filtering, as described later on. 

2.2. Water reservoir dynamics and state machine 

In order to properly design the SWL and PWL estimators, 

the water reservoir dynamics are employed as the baseline 
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for the state machine design of the controller. More 

specifically, the water reservoir is modeled as a cylinder-

like tank with cross section of arbitrary shape as the base 

and continuous water inflow along its vertical-dimension 

walls, inversely dependent on the drainage height during 

pumping or recovering states (non-stabilized), or 

approximately in equilibrium otherwise (stabilized). 

Hence, “pumping” and “stabilized” are the two 

independent factors and the total number of states are four, 

as depicted in the STD in Figure 1. 

According to Torricelli's law, the parting speed of water 

inflow is based on the difference of height between the 

stabilized water level when no pumping (SWL) and the 

current (lower) water level during pumping, assuming no 

air resistance, viscosity, or other hindrance to the fluid 

flow. After some time, the inflow rate may match the 

outflow rate caused by the pumping, hence establishing a 

new equilibrium (PWL). The total inflow can be modeled 

according to the change in water (mass), as in Eq.1: 

𝑑𝑚(𝑡)

𝑑𝑡
= 𝑄𝑖𝑛 (

ℎ0−ℎ(𝑡)

ℎ0
) − 𝑄𝑜𝑢𝑡 ⇒ ⋯  

… ⇒
𝑑ℎ(𝑡)

𝑑𝑡
+ (

𝑄𝑖𝑛

𝜌𝐴ℎ0
) ℎ(𝑡) =

𝑄𝑖𝑛−𝑄𝑜𝑢𝑡

𝜌𝐴
             (1) 

where m(t) is the mass of water, ρ is the water density, A 

is the base area of the reservoir, Qin is the inflow rate 

dependent on the relative difference of the current water 

level h(t) from the no-pumping water level h0 and Qout is 

the fixed outflow rate (pumping). This is an ordinary 

differential equation of first order that can be solved as: 

𝑑𝑦

𝑑𝑥
+ 𝑃(𝑥)𝑦 = 𝑄(𝑥) 

 ⇒ 𝑦𝑒∫𝑃(𝑥)𝑑𝑥 = ∫𝑄(𝑥)𝑒∫𝑃(𝑥)𝑑𝑥𝑑𝑥 + 𝐶0            (2) 

Substituting the terms in Eq.2 with the model’s parameters, 

the final solution is: 

𝑥 = 𝑡
𝑦 = ℎ(𝑡)

𝑃(𝑥) =
𝑄𝑖𝑛
𝜌𝐴ℎ0

= 𝐶1

𝑄(𝑥) =
𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡

𝜌𝐴
= 𝐶2}

 
 

 
 

⇒ ℎ(𝑡)𝑒∫𝐶1𝑑𝑡 = ∫𝐶2𝑒
∫𝐶1𝑑𝑡𝑑𝑡 + 𝐶0 

ℎ(𝑡) = 𝑐 + 𝛼𝑒𝛽𝑡    ,   

{
 

 𝑐 =
𝐶2

𝐶1
= (1 − 𝑄𝑜𝑢𝑡

𝑄𝑖𝑛
)ℎ0

𝛼 = 𝐶0

𝛽 = −
𝑄𝑖𝑛

𝜌𝐴ℎ0

                     (3) 

where h(t) is the parameterized estimator for the current 

water level in the reservoir during the non-stabilized states, 

i.e., when the drainage (Qout >0) and the recovering (Qout 

=0) are onset. In stabilized states, the current water level is 

approximately constant, i.e., a linear function with 

approximately zero slope. Figure 2 illustrates these 

concepts and depicts the analytical models the water level 

estimator for each of the four states of the system. Table 1 

provides sample estimates for the parameters of non-

stabilized states in Eq.3 using measurements from a two-

month time frame, where the constants (c) also indicate the 

asymptotic values at PWL (22.49 m) and the SWL (30.51 

m). 

 

Figure 1. State transition diagram of the controller. 

 

  

 

Figure 2. System states and analytical models for the water level in the reservoir, illustrating the actual water level 

measurements (blue) and the Kalman filter (red) used for adaptive noise-resilient estimators.

Table 1. Sample estimates for the parameters of non-

stabilized states (exponential). 

 Pumping: 

state(1,1) 

No pumping: 

state(0,1) 

scaling: α +10.84 -2.481e5 

exponent: β -0.3028 -4.208 

constant: c +22.49 +30.51 

fit: R 0.9962 0.9898 

error: RMSE 0.1496 0.2619 

2.3. Water level and state detection 

For the detection of stabilized states, linear regression can 

be used with proper thresholds over goodness-of-fit 

(residuals) and slope (change rate). However, the use of 

exponential fits for the other two non-stabilized states, as 

depicted in Figure 2, can provide valuable information 

about the dynamics of the water reservoir, as well as the 

pumping apparatus in terms of fault detection and 
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predictive maintenance. The typical sampling rate used in 

the apparatus is in the order of 20-180 seconds, calibrated 

against the drainage and recovery rates (slopes) for each 

specific installation. In any case, this is plenty of time for 

an online simple exponential fit upon a sliding window of 

5-15 data points (a few minutes). In practice, each model 

fit for the next possible state is updated with every new 

data point and the most probable state transition is realized 

when the corresponding threshold is met, i.e., when the 

exponential has reached the PWL or SWL and when the 

subsequent linear fit exhibits near-zero slope, as Figure 2 

shows. 

2.4. Kalman and F-test filtering 

Two methods have been employed for data filtering in 

combination with the state detection approach described 

above, i.e., before employing the exponential or linear fits. 

Namely, the first is Kalman filtering [Haykin] for robust 

estimation of the water level and its rate of change, i.e., 

“velocity”, but with specific known limitations, most 

importantly its significant processing load if the system 

model is large, as well as the need for fixed-rate data input. 

The second alternative is employing a much simpler 

statistical filter based on F-test [Spiegel], i.e., tracking of 

running variances. In practice, the variance in the 

stabilized states is compared with the variance in the 

current sliding window via a standard F-test at a specific 

significance level (typically a=0.05). This approach is less 

accurate than Kalman filter and does not provide proper 

estimation of the slope, but it can be applied with variable-

rate data input. In both Kalman and F-test filtering, the 

baseline variance is measured separately for PWL and 

SWL, after the initial system setup and with periodic re-

calibration. Additional post-processing may be applied if 

necessary via median filtering, e.g., when the reservoir 

dynamics are inherently highly volatile and result in noisy 

slope estimations. 

2.5. Predictive modeling 

As described in the previous section, the use of separate 

model fits for each of the four states enables the extraction 

of valuable information about the dynamics of the water 

reservoir and the pumping apparatus. More specifically, 

the variance measured during the stabilized states s(x,0), 

i.e., with or without pumping, can reveal possible 

deficiencies or noise of the water level measurement 

sensing. Similarly, the goodness-of-fit and the exponential 

parameters (scale, exponent) during the non-stabilized 

states s(x,1) can reveal possible leaks and other faults in 

the pumping apparatus. Using the running best-fit model 

parameters for each state and comparing them to known 

periods of nominal operation of the system, persistent 

deviations can be detected, quantified and characterized in 

terms of severity. For example, indicators of degrading 

performance of the pumping apparatus include slower 

exponential rate when pumping starts, large variance 

(instability) when approaching the expected PWL, longer-

than-expected time required to reach it, etc. 

In addition to predictive maintenance, three predictive 

models have also been designed and implemented in the 

system, namely: (a) next-day SWL, (b) next-day PWL, (c) 

3-hour look-ahead “spot” water level. Models (a) and (b) 

are examples of medium/long-term predictors, using the 

aggregated statistics of the previous 24-hour period, 

including max, min, mean, linear trend (slope), etc, for the 

entire set and for the specific state, SWL or PWL, 

respectively. Two ML regression methods have been 

employed with very similar results, namely Extreme 

Gradient Boosting (XGBR) [Osman] and Random Forest 

(RFR) [Breiman]. Model (c) is an example of short-term 

predictor, using a 9-hour look-back sliding window on the 

recorded measurements and estimating the water level 3 

hours ahead, again employing either XGBR or RFR with 

similar results. In the specific use case of system 

deployment and data recording over a period of almost a 

year, the typical performance (RMSE) of these predictors 

is in the order of 6.5-8.5 cm for (a) and (b), and 16-17 cm 

for (c), compared to a value range of about 22.5 m (PWL) 

to 30.5 m (SWL), as Figure 2 and Table 1 show. 

2.6. Long-term analytics and calibration 

Besides short-term statistics, long-term tracking of the 

SWL can reveal the seasonal trends and variability of the 

water level, which is very important for the optimal 

management of water resources in the specific site. 

Similarly, the long-term tracking of the PWL can reveal 

the seasonal changes in the inflow, which is indicative of 

the water availability in the larger region. Additionally, 

these long-term seasonal data are necessary for the proper 

re-calibration of the system, as PWL and SWL are 

necessary for the correct model estimations, fault detection 

and predictive maintenance. Figure 3 illustrates such long-

term plot for SWL over several months. 

 

 

Figure 3. Long-term plot for SWL over a period of several 

months; sharp drops reveal calibration errors or system 

malfunctions that were detected and corrected. 

3. Implementation and Deployment 

3.1 Sensing (I/O) and asynchronous processing 

The IoT apparatus consists of several sensors and a water 

container in order to monitor the level and quality of the 

water (Figure 4). The SBC used is Raspberry Pi (RPi) 4.  

The RPi controls the hardware peripherals (e.g., relays, 

sensors), reads and processes sensors’ measurements (e.g., 
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atmospheric pressure, water depth, pH, Electro-

conductivity (EC), Total Dissolved Solids (TDS), 

Oxidation-Reduction Potential (ORP) and temperature of 

the water) and communicates with the Cloud to upload data 

and to receive remote commands and updated 

configuration and firmware. 

 

Figure 4. IoT apparatus (main hub). 

The OS of the IoT apparatus is Raspbian, with the control 

S/W programmed in Python and using ‘asyncio’ module 

for RPi’s resources’ use maximization. The data collected 

on the device are pre-processed and transformed locally by 

using modules such as ‘numpy’ and ‘scipy’. Furthermore, 

an SQLite3 database is used to store data locally for a 

configurable period of time, in order to retain data during 

loss of internet connection. The backbone of the IoT device 

control is Node-RED, which acts as an orchestrator 

between the Python scripts and the commands to/from the 

Cloud. 

3.2 Networking 

The transportation of Cloud-to-Device messages (C2D) 

and vice versa is accomplished by using the MQTT 

protocol. The IBM IoT Platform acts as the broker and is 

responsible for distributing messages to/from the 

connected clients. The connection to the Cloud and the 

subscription to a certain topic is handled though Node-

RED. Messages between the IoT apparatus and the Cloud 

are exchanged in JSON format. This enables remote 

control and firmware updates, by subscribing to the 

appropriate topic. 

3.3 Front-end and User Interface 

The IBM Cloud hosts the front-end application which is a 

Cloud Foundry App, created using the IBM SDK for 

Node.js. A Web application is used to access information 

in a user-friendly layout and perform IoT device 

operations. A backend application (Express.js) accesses 

the historical data database and the predictive analytics 

endpoints. A frontend application (Angular) consumes the 

data via REST protocol. Water level, quality of water 

measurements and prediction/trends (next-day SWL, next-

day PWL, 3-hour look-ahead “spot” water level) are 

displayed in a dashboard view (Figure 5).  Based on the 

latest HTML5 features, notifications are used in case of 

important events. Raw IoT apparatus data are available in 

graph and table views. The backend application broadcasts 

commands to IoT devices via a MQTT broker. Each IoT 

device subscribes to MQTT commands so that a user may 

transfer objects in JSON format (configuration, firmware, 

etc) to a device using a Web interface. 

 

Figure 5. Dashboard view with latest water level 

measurement with the upcoming trend, well status, next 

day predictions for max and min level, level average values 

and the latest water quality measurement. 

4. Discussion & Conclusions 

One of the unique features of the Water Underground 

system is the inherently distributed deployment of the 

various functional modules. Significant amount of the raw 

data registration and pre-processing is performed on the 

RPi device itself, configured and fine-tuned for each 

specific deployment. Thus, global sub-optimal 

implementations in the back-end are avoided and the 

quality of the incoming data is ensured. Furthermore, the 

design and implementation of the Machine Learning 

modules in the back-end, as well as the front-end Web 

application, do not need to be closely coupled to a specific 

RPi device deployment. This is particularly important in 

the case of analytics and model re-training, since in this 

way datasets can be constructed across several 

deployments and generalization is enhanced. 

Finally, the overall design, implementation and 

deployment of Water Underground is a successful use-case 

and prototyped solution for various other tasks and 

contexts, which require a wide combination of IoT sensing, 

robust Edge processing, networking and Cloud services, 

computationally intense back-end processing, as well as 

versatile front-end user interfaces. 
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