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Abstract. Currently, petroleum-based volatile fatty 

acids (VFAs) sources are not acceptable towards 

sustainable development goals (SDG); therefore, 

biobased-derived VFAs are of interest. Anaerobic 

digestion has been identified as a useful technology for 

the production of biobased VFAs from organic waste 

residue because of their environmental sustainability, 

easy operation and affordability. The anaerobically 

digested liquid comprises several inorganic and organic 

compounds/particles, including VFAs, which is one of 

the main challenges nowadays since the 

particles/compounds free VFAs are highly demanded. 

Hence, pressure-driven membrane filtration 

technologies (microfiltration, ultrafiltration, 

nanofiltration and reverse osmosis)  is being widely 

used due to their higher VFAs recovery efficiency. 

Microfiltration and ultrafiltration usually applied as 

pretreatment for removing coarser particles, while 

nanofiltration and reverse osmosis possess a remarkable 

role in recovery performances. This report is 

highlighted on the various types of membrane used for 

VFAs recovery percentages and critically discuss their 

influence. Afterwards, it was confirmed that lower pore 

size membranes offer better recovery percentages of 

VFAs over higher pore size membranes due to their 

permeability rate.     
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1. Introduction 

The utilization of environment-friendly products is one 

of the principal requirements to accomplish the 

Sustainable Development Goals (SDGs). The 2030 

agenda for SDGs is strongly harmonized with a circular 

economy action plan, which includes resource recovery, 

reuse and recycling strategies (Abou Taleb and Al 

Farooque 2021; Rodriguez-Anton et al. 2019). Priorities 

have been given to the organic waste streams-based 

materials as a feedstock for the production of value-

added products towards a resource recovery society 

establishment. Large amounts of organic waste are often 

collected from different sources, and it is advisable to 

use them effectively to save the environment and human 

health from their adverse effects (Lag-Brotons et al. 

2020; Moustakas et al. 2020; Pervez et al. 2021).  

Food waste (FW) is composed of organic compounds 

and nutrients riched material, which are beneficial for 

the resource recovery concept. The conventional 

management of FW was carried out in mainly three 

ways, such as landfill, composting, and incineration, 

which is not sustainable and uneconomical (Esparza et 

al. 2020; Girotto et al. 2015). In recent years, the 

conversion of FW to value-added products through the 

use of anaerobic digestion (AD) technology has been 

gaining more attention due to their feasibility and 

economic benefits. The full-scale AD process generally 

takes place in four steps, mainly (hydrolysis, 

acidogenesis, acetogenesis and methanogenesis) 

(Wainaina et al. 2020; Xu et al. 2018). The production 

of important intermediate chemical compounds, 

namely, volatile fatty acids (VFAs), is considered a 

promising chemical feedstock for several industrial 

applications (Figure 1) (Wainaina et al. 2021; Wainaina 

et al. 2019). Nevertheless, anaerobically digested VFAs 

enriched complex effluents need to be purified from 

other unwanted substances due to their potential market 

opportunities (Atasoy et al. 2018; Aydin et al. 2018).  

Till now, various approaches such as adsorption 

(Reyhanitash et al. 2017), solvent extraction (Schlosser 

et al. 2005), electrodialysis (Zhao et al. 2021), 

membrane filtration (Zacharof and Lovitt 2013), 

esterification (Plácido and Zhang 2018) and so on have 

been attempted to recover VFAs from anaerobic 

fermentation broth. However,  pressure-driven 

membrane filtration has particularly been selected as an 
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effective option for the sustainable recovery of VFAs 

because of their numerous advantages  (Aghapour Aktij 

et al. 2020; Zhu et al. 2021). 

 

 

Figure 1. Volatile fatty acids and their application (Wainaina et al. 2021) 

2. Progress on pressure-driven membrane 

filtration assisted VFAs recovery 

The regulation of pressure is the main driving force in 

the pressure-driven membrane filtration process, in 

which the measurement of membrane pore size also 

plays a role in their performances. Generally, four types 

such as microfiltration (MF) (0.1–5 μm, 1–10 bar), 

ultrafiltration (UF) (500–100,000 Da, 1–100 nm, 1–10 

bar), nanofiltration (NF) (100–500 Da, 0.5–10 nm, 10–

30 bar), and reverse osmosis (RO) (<0.5 nm, 35–100 

bar)  have commonly been used for VFAs recovery (Cui 

et al. 2010; Van der Bruggen et al. 2003).  

As a primary recovery step, the microfiltration and 

ultrafiltration process has been employed for controlling 

the presence of macromolecules, suspended particles, 

bacteria and protein in the effluent. For example, some 

studies successfully removed larger particles and 

produced a particle-free solution with an amount of 

more than 80% of recovered VFAs after the 

microfiltration process, while the addition of 

ultrafiltration enhanced the concentration of VFAs in 

the solution, as shown in Table 1. The main reason for 

this phenomenon that the pore size of MF/UF 

membranes is bigger than the size of VFAs compounds, 

thereby filtered solution contains a higher amount of 

VFAs and reducing the recovery rate (Jänisch et al. 

2019).  

The nanofiltration process is revealed as a key 

technology for a higher amount of VFAs recovery. The 

major advantage of this process is their low pore size (1 

nm) membrane, which is favourable for small molecular 

weight-based VFAs compounds retentate. As shown in 

Table 1, the recovery percentage of VFAs compounds 

are varied when the used membranes pore size are 

different. For example, the recovery percentage of 

acetic acid was 78% when 200-300 Da based 

nanofiltration membrane used, but the recovery 

percentage significantly increased to 96.1% in the 

presence of 100 Da membrane (Table 1). Also, another 

important factor is solution pH. Higher pH provided 

better recovery percentages in the nanofiltration 

process. In this case, membrane surface charge 

dominant the separation process. Generally, negatively 

charged compound retention percentage enhanced when 

the transport flow of nanofiltration deals with larger 

charged compounds retentate.  Acetic acid has a low 

pKa value which means this compound will easily be 

dissociated and ionized than butyric acid, thereby the 

retention ability is more for acetic acid. Nanofiltration 

membrane with a negative surface charge can reject 

negatively charged compounds significantly because of 

the electrostatic repulsions.   

Reverse osmosis also a solution-diffusion mechanism-

based membrane process. The recovery efficiency of 

VFAs by the treatment of RO membranes is also 

constituted through the combination of pore size and 

surface charge trend. RO membranes are more loosely, 

and the interaction between the membrane surface 

charge and solution components exhibited dominance 

over molecular weight and size exclusion properties. On 

the other hand, dense RO membranes are most likely 

less affected by the size retention mechanism 

(Aghapour Aktij et al. 2020; Mollahosseini and 

Rahimpour 2014).  
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Table 1. Pressure-driven membrane filtration process 

on VFAs recovery percentages 

Filtration 

mode 

VFAs recovery 

performance 

References 

MF 87% (Kim et al. 2005) 

92.8% (Tao et al. 2016) 

 

UF 

 

Total VFAs 

concentration 52 g/L 

(Trad et al. 2015) 

VFAs concentration 

7453 mgCOD/L 

(Longo et al. 2015) 

 

 

 

 

NF 

Butyric acid,100% (Xiong et al. 2015) 

Acetic acid, 78% (Afonso 2012) 

Acetic acid, 96.1% (Ecker et al. 2012) 

Butyric acid, 88% (Zhu et al. 2020) 

Acetic acid, 40% (Zacharof et al. 

2016) 

Acetic acid, 45% (Han and Cheryan 

1995) 

Propionic acid, 84% (Jänisch et al. 

2019) 

Acetic acid, 85% (Bellona and 

Drewes 2005) 

 

 

RO 

Isobutyric acid, 100% (Hausmanns et al. 

1996) 

Acetic acid, 81.92% (Liu et al. 2020) 

Acetic acid, 90% (Zhou et al. 2013) 

Acetic acid, 41% (Malmali et al. 

2014) 

Acetic acid, 70% (Lyu et al. 2016) 

 

3. Conclusion 

In this review, it is clearly quantified that the pressure-

driven membrane filtration process offers great 

promises in recovering VFAs compounds. The NF/RO 

membrane process is the best-suited technologies in 

terms of recovery rate, while the MF/UF process is 

effective for complex effluents purification. Research 

on scalable (long term operation and pilot plant) and 

economical methods are needed to be developed in the 

upcoming days for VFAs recovery. We are optimistic 

that the pressure-driven membrane filtration process 

may overcome the limitation of the conventional 

recovery process.  
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