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Abstract. The marginal structure of streamflow, with 

focus on the right tail behaviour, is considered as the main 

factor in flood risk assessment, while little is known on the 

effect of the temporal dependence structure and 

irreversibility of streamflow. Interestingly, the second-

order dependence behaviour of streamflow is shown to 

highly deviate from a white noise behaviour (i.e., temporal 

independence), and to rather exhibit a Hurst-Kolmogorov 

(HK) behaviour, with strong autocorrelation and 

irreversibility at small scales and long-term persistence at 

large scales. The HK dynamics is known to be 

characterized by large uncertainty and variability, and 

therefore, it is expected to have a non-negligible impact on 

flood inundation mapping, especially in cases of 

successive storm events. Through benchmark experiments 

and real case scenarios, we investigate the influence of 

these effects in several output features of flood risk 

modelling such as flood depth, velocity, and duration, and 

we discuss possible consequences for insurance policies. 
Keywords: stochastics, flood, streamflow, dependence, 

irreversibility 

1. Introduction 

The time-irreversibility is a model attribute that can 

efficiently simulate time causal relations, and it has been 

shown that in atmospheric processes irreversibility mostly 

exists at the finest scales, while may be negligible at 

hydrologically relevant time scales (Koutsoyiannis, 2019), 

with the exception of the irreversibility of streamflow that 

can be marked even for several days (Vavoulogiannis et 

al., 2021). 

The long-range dependence (LRD; also known as long-

term persistence or the Hurst phenomenon; Hurst, 1951; 

earlier and independently analyzed by Kolmogorov, 1940) 

is a model attribute characterized by the power-law drop of 

a process’s second-order dependence structure at large 

scales. It is known that the LRD model cannot be applied 

at the finest scales of a process (Koutsoyiannis et al., 

2018), where a fractal behaviour is often apparent 

(Gneiting and Schlather, 2004), and with a transient 

behaviour identified at the intermediate scales of various 

hydrometeorological processes (Dimitriadis and 

Koutsoyiannis, 2018). The combination of the 

aforementioned mixed fractal-transient-LRD behaviours 

at the scale domain, is known as the Hurst-Kolmogorov 

dynamics (Koutsoyiannis, 2010), and has been shown to 

efficiently simulate the dependence structure from the 

finest to the largest available scales of a large variety of 

natural processes, including streamflow (Dimitriadis et al., 

2016; 2021). 

Since, both the above behaviours (i.e., time-irreversibility 

and HK) are apparent in the streamflow process, it is 

argued that will also have a non-negligible impact on 

stochastic processes involved in flood inundation 

mapping, such as flood depth and water velocity. While the 

effect of time-irreversibility can be quantified by the 

skewness of the differenced (depth and velocity) processes 

(Koutsoyiannis, 2020), the reflection of the LRD (and in 

general, the HK) behaviour at the flood inundation 

mapping cannot be easily identified by the common block 

maxima method for extremes (Iliopoulou and 

Koutsoyiannis, 2018), but rather by indexes indicative of 

the flood event temporal duration and the cluster size of 

depth and velocity caused by successive storm events (see 

preliminary application in Dimitriadis and Koutsoyiannis, 

2019). 

In this work, we investigate the influence of the above 

characteristics on the flood inundation mapping by 

quantifying the mean temporal cluster size of cell values 

(depth and velocity) over threshold as well as the skewness 

of the differenced flood depth and water velocity, from a 

benchmark application at the Peneios river in Greece (Fig. 

1). It is stressed that both the LRD and time-irreversibility 

behaviours are seldom taken into account in stochastic 

simulations (Koutsoyiannis and Dimitriadis, 2021) and 

insurance policies (Papoulakos et al., 2020); however, as 

we show below, they may be proven crucial for the flood 

risk assessment. 

2. Methods and Results 

The LRD behaviour can be robustly visualized and 

quantified through the estimated variance in the scale 
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domain. It is noted that this stochastic metric (i.e., variance 

of the averaged process vs. scale) was loosely applied in 

the 90s, for later to be disproved as a weak estimator of the 

LRD (e.g., Beran, 1988; see discussion in Dimitriadis et 

al., 2021). However, after linking it to its theoretical value 

(e.g., Papoulis, 1991) and by properly adjusting for 

statistical bias (Koutsoyiannis, 2011), it was shown to be 

an even more advanced estimator for LRD than the 

common metrics of autocovariance in the lag domain and 

the power-spectrum in the frequency domain (Dimitriadis 

and Koutsoyiannis, 2015). Since a single name for this 

method did not exist (as, for example, for the periodogram 

or the correlogram methods), Koutsoyiannis (2010) coined 

the term ‘climacogram’ to emphasize the graphical 

representation and the link of the concept to scale (i.e., 

climax in Greek). The climacogram estimator can be 

expressed as (Koutsoyiannis, 2021): 

𝛾(𝜅𝛥) =
𝜅
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where 𝜅 = 𝑘/𝛥 is the dimensionless scale and k the 

temporal scale, Δ is the time resolution of the process (e.g., 

1 day), n is the length of the timeseries, and 𝑥𝑖
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climacogram model adopted here for the streamflow 

process at Peneios river (Fig. 2), i.e., 

𝛾(𝑘) =
𝑞
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where 𝑞 is the variance at scale zero, and H is the Hurst 

parameter (i.e., for 0.5 < H < 1 the process exhibits LRD 

behaviour, while for 0 < H < 0.5 an anti-persistent 

behaviour, and for H = 0.5 a white-noise behaviour). 

Also, for the marginal structure of the streamflow, the 

Pareto-Burr-Feller distribution (also known as Pareto IV or 

Burr XII, without however giving recognition to all 

contributors; see discussion in Koutsoyiannis et al., 2018) 

is adopted for the application (Fig. 2): 
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where λ is a scale parameter, and 𝜉, 𝜁 are shape parameters. 

For the visualization of the impact of the time-

irreversibility and mean cluster size: (a) a white-noise 

(WN) process (i.e., H = 0.5) is simulated with the same 

marginal structure of the observed timeseries but with 

time-reversibility; (b) a process withour time-

irreversibility (TR) is simulated with the same 

climacogram model and PBF marginal distribution applied 

for the observed timeseries; and (c) a time-irreversible (TI) 

process is simulated with the same climacogram and PBF 

models. It is noted that the seasonal periodicity apparent in 

the observed timeseries is only illustrated in Figure 2, and 

not used for the comparison between the the time-

symmetrical and white-noise timeseries, since we are not 

interested here in the seasonality impact on the LRD and 

time-irreversibility (such comparisons will be performed 

in future works). 

For the above simulations, the AxiSymmetric Moving 

Average (ASMA) scheme (Koutsoyiannis, 2020) is 

followed, where the observed skewness coefficient of the 

timeseries and the differenced timeseries is estimated as 

3.9 and 1.3, respectively. Therefore, the skewness ratio, 

defined as the skewness of the differenced process 

standardized by the skewness of the regular process, is 

estimated as 1.3/3.9 = 0.3, while for the selected 

simulations is estimated as ~0.0 for both the simulation of 

white-noise and the one with no time-irreversibility, and 

0.4 for the simulation with time-irreversibility. 

For the flood inundation, the HEC-RAS 2D 

(www.hec.usace.army.mil/software/hec-ras/) model is 

used with the dynamic-wave scheme, and with a 

rectangular grid of 50×50 m2 pixel size. 

In Figure 1, we illustrate a flood inundation map at a steady 

800 m3/s streamflow. In Figure 2, we compare the 

observed (OB) timeseries with the simulated timeseries 

adjusted for time-irreversibility (TI), while also showing 

the simulation without time-irreversibility along with the 

white-noise (WN) simulation. 

In Figure 3, we depict the mean cluster size (averaged over 

all the innundated cells) of the flood depth and water 

velocity over various thresholds equal to percentiles 

ranging from 0.1 to 0.9. It is noted that for the 

identification of the impact of the LRD behaviour the mean 

cluster sizes of the observed and simulated timeseries are 

standardized with the simulated white-noise timeseries. 

Finally, for the identification of the impact of the time-

irreversibility the skewness coefficient of the differenced 

timeseries is standardized with the regular skewness 

coefficient. The average (over all inundated cells) of this 

metric is estimated for the flood depth of the WN, TR, and 

TI timeseries, as -1.3, 2.2 and 7.1, respectively; and for the 

water velocity of the same timseries as 0.2, 0.2, and 1.3, 

respectively. 

3. Discussion and Conclusions 

In this work, we show how the long-range dependence and 

time-irreversibility can highly affect the flood risk in terms 

of the flood depth and water velocity perisistence, by 

perforoming benchmark simulations of over 10-years 

length of streamflow at the Peneios river in Greece. 

Specifically, it is shown that the cluster size is alsmost 

twice as high for the depth and velocity, when simulating 

the long-term persistence with a Hurst parameter of H = 

0.8, as compared to the white noise behaviour. Also, it is 

found that there seems to be no effect of the time-

irreversibility on the cluster size of the above two flood 

inundation processes (i.e., depth and velocity). 

Although time-irreversibility is not reflected on the cluster 

size, it is shown to have a great impact on the skewness 

ratio, defined as the skewness of the differenced processes 

standardized by the skewness of depth and velocity. 

Particularly, the skewness ratio of velocity seems to be 

lightly affected by the flood inundation model in case of 

the white-noise and time-symmetrical timeries (i.e., from 

0.0 is increased to 0.2), while is particularly increasing at 
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the time-irreversible timeseries (i.e., from 0.4 to 1.3). This 

increase can be explained by the diffusion generated by the 

flood model. In case of the flood depth, the skewness ratio 

is always heavily increasing for the LRD simulation 

regardless of time irreversibility (i.e., from 0.0 to 2.2, and 

from 0.4 to 7.1, respectively). The skewness ratio of the 

white-noise timeseries is heavily decreasing probably due 

to the fact that the depth (in contrast to the velosity) may 

exhibit negative skewness coefficient, depending on the 

topography of the area and the flood inundation.  

The above observations highlight the need for further 

investigation of the impact of the LRD and time-

irreversibility behaviours in flood risk assessment. 

 

  

Figure 1. The inflow-outflow positions and the flood simulation area [left], and the flood inundation map for a steady 

streamflow of 800 m3/s [right], at the Peneios river in Thessaly plain in Greece [Source: Dimitriadis et al., 2018]. 

  

Figure 2. The observed (OB) and simulated with time-irreversibility (TI) timeseries with seasonality [left], and the 

simulated with (TI) and without (TR) time-irreversibility, and white-noise (WN) timeseries without seasonality [right]. 

  

Figure 3. The mean cluster size (in days) of the flood depth [left] and water velocity [right], for the simulated timeseries. 
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