Immobilized rGO/TiO2 photocatalyst for water purification

Paper ID: 
cest2019_00978
Topic: 
Advanced oxidation processes
Published under CEST2019
Proceedings ISBN: 978-618-86292-0-2
Proceedings ISSN: 2944-9820
Authors: 
Zouzelka R., Brabec L., Remzova M., (Corresponding) Rathousky J.
Abstract: 
The preparation of immobilized graphene–based photocatalyst layers is highly desired for environmental applications. In this study, the preparation of an immobilized reduced graphene oxide (rGO)/TiO2 composite by electrophoretic deposition (EPD) was optimized. It enabled quantitative deposition without sintering and without the use of any dispersive additive. The presence of rGO had beneficial effects on the photocatalytic degradation of 4-chlorophenol in an aqueous solution. A marked increase in the photocatalytic degradation rate was observed, even at very low concentrations of rGO. Compared with the TiO2 and GO/TiO2 reference layers, use of the rGO/TiO2 composite (0.5 wt% of rGO) increased the first-order reaction rate constant by about 70%. This enhanced performance was due to the increased formation of hydroxyl radicals that attacked the 4-chlorophenol molecules. The direct charge transfer mechanism had only limited effect on the degradation. Thus, EPD-prepared rGO/TiO2 layers appear to be suitable for environmental application.
Keywords: 
electrophoretic deposition, photocatalysis, TiO2, reduced graphene oxide, water purification